Additive model, cochlear implant, kernel smoothing, longitudinal data, random effects, three-stage procedure, 62G07, 62P10, 62F12,
This paper proposes an optimization model for selecting a larger subsample that improves the representativeness of a simple random sample previously obtained from a population larger than the population of interest. The problem formulation involves convex mixed-integer nonlinear programming (convex MINLP) and is, therefore, NP-hard. However, the solution is found by maximizing the size of the subsample taken from a stratified random sample with proportional allocation and restricting it to a p-value large enough to achieve a good fit to the population of interest using Pearson’s chi-square goodness-of-fit test. The paper also applies the model to the Continuous Sample of Working Lives (CSWL), which is a set of anonymized microdata containing information on individuals from Spanish Social Security records and the results prove that it is possible to obtain a larger subsample from the CSWL that (far) better represents the pensioner population for each of the waves analyzed.
Efectos de la crisis económica en el empleo de la población inmigrante en el País Vasco: un análisis... / V. NUÑEZ et al. Efectos de la crisis económica en el empleo de la población inmigrante en el País Vasco: un análisis por sexo, formación y origenVicente Núñez-Antón, Ainhoa Oguiza-Tovar y Jorge Virto-Moreno Universidad del País Vasco, EspañaResumen En este artículo se ha realizado un estudio sobre las tasas de ocupación de la población inmigrante en el País Vasco en un periodo de expansión económica y otro de recesión. El objetivo ha consistido en analizar el comportamiento de la ocupación de la población inmigrante durante la crisis. Independientemente de su sexo, origen o cualificación, al final de la crisis la tasa de ocupación de los inmigrantes es menor que la de la población vasca, con la única excepción de las mujeres de procedencia americana. Las mujeres inmigrantes se han visto menos afectadas por la crisis que los hombres siendo la segregación sectorial la causa que ha podido tener un mayor peso a la hora de explicar la caída en la brecha de género en la ocupación. Con respecto al país de origen y el nivel de estudios son los trabajadores africanos y los de estudios primarios, foráneos y autóctonos, los grandes damnificados por la crisis.Palabras clave: Inmigración, tasa de ocupación, nivel de estudios, género, crisis económica. Abstract Effects of the economic crisis on employment among the immigrant population in the Basque Country: an analysis for sex, qualification and geographical originIn this paper we study employment rates among the immigrant population in the Basque Country in a period of economic expansion and in a recession. The objective is to analyze how employment among the immigrant population behaved during the crisis. Regardless of their gender, origin or qualifications, at the end of the crisis the employment rate among immigrants was lower than among the local-born Basque population, with the sole exception of women from the Americas. Immigrant women were less affected by the crisis than men. Sectoral segregation is probably the main cause of the fall in the gender gap in employment. With regard to country of origin and level of education, African workers and those with only basic studies (foreign and local-born alike) were hit hardest by the crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.