We compared the effects of two resistance training (RT) programs only differing in the repetition velocity loss allowed in each set: 20% (VL20) vs 40% (VL40) on muscle structural and functional adaptations. Twenty-two young males were randomly assigned to a VL20 (n = 12) or VL40 (n = 10) group. Subjects followed an 8-week velocity-based RT program using the squat exercise while monitoring repetition velocity. Pre- and post-training assessments included: magnetic resonance imaging, vastus lateralis biopsies for muscle cross-sectional area (CSA) and fiber type analyses, one-repetition maximum strength and full load-velocity squat profile, countermovement jump (CMJ), and 20-m sprint running. VL20 resulted in similar squat strength gains than VL40 and greater improvements in CMJ (9.5% vs 3.5%, P < 0.05), despite VL20 performing 40% fewer repetitions. Although both groups increased mean fiber CSA and whole quadriceps muscle volume, VL40 training elicited a greater hypertrophy of vastus lateralis and intermedius than VL20. Training resulted in a reduction of myosin heavy chain IIX percentage in VL40, whereas it was preserved in VL20. In conclusion, the progressive accumulation of muscle fatigue as indicated by a more pronounced repetition velocity loss appears as an important variable in the configuration of the resistance exercise stimulus as it influences functional and structural neuromuscular adaptations.
This study aimed to analyze: 1) the pattern of repetition velocity decline during a single set to failure against different submaximal loads (50-85% 1RM) in the bench press exercise; and 2) the reliability of the percentage of performed repetitions, with respect to the maximum possible number that can be completed, when different magnitudes of velocity loss have been reached within each set. Twenty-two men performed 8 tests of maximum number of repetitions (MNR) against loads of 50-55-60-65-70-75-80-85% 1RM, in random order, every 6-7 days. Another 28 men performed 2 separate MNR tests against 60% 1RM. A very close relationship was found between the relative loss of velocity in a set and the percentage of performed repetitions. This relationship was very similar for all loads, but particularly for 50-70% 1RM, even though the number of repetitions completed at each load was significantly different. Moreover, the percentage of performed repetitions for a given velocity loss showed a high absolute reliability. Equations to predict the percentage of performed repetitions from relative velocity loss are provided. By monitoring repetition velocity and using these equations, one can estimate, with considerable precision, how many repetitions are left in reserve in a bench press exercise set.
This study analyzed the time course of recovery following 2 resistance exercise protocols differing in level of effort: maximum (to failure) vs. half-maximum number of repetitions per set. 9 males performed 3 sets of 4 vs. 8 repetitions with their 80% 1RM load, 3?4(8) vs. 3?8(8), in the bench press and squat. Several time-points from 24?h pre- to 48?h post-exercise were established to assess the mechanical (countermovement jump height, CMJ; velocity against the 1?m?s?1 load, V1-load), biochemical (testosterone, cortisol, GH, prolactin, IGF-1, CK) and heart rate variability (HRV) and complexity (HRC) response to exercise. 3?8(8) resulted in greater neuromuscular fatigue (higher reductions in repetition velocity and velocity against V1-load) than 3?4(8). CMJ remained reduced up to 48?h post-exercise following 3?8(8), whereas it was recovered after 6?h for 3?4(8). Significantly greater prolactin and IGF-1 levels were found for 3?8(8) vs. 3?4(8). Significant reductions in HRV and HRC were observed for 3?8(8) vs. 3?4(8) in the immediate recovery. Performing a half-maximum number of repetitions per set resulted in: 1) a stimulus of faster mean repetition velocities; 2) lower impairment of neuromuscular performance and faster recovery; 3) reduced hormonal response and muscle damage; and 4) lower reduction in HRV and HRC following exercise.
Rodríguez-Rosell, D, Yáñez-García, JM, Sánchez-Medina, L, Mora-Custodio, R, and González-Badillo, JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res 34(9): 2537–2547, 2020—This study aimed to compare the pattern of repetition velocity decline during a single set to failure performed against 4 relative loads in the bench press (BP) and full back squat (SQ) exercises. After an initial test to determine 1 repetition maximum (1RM) strength and load-velocity relationships, 20 men performed one set of repetitions to failure (MNR test) against loads of 50, 60, 70, and 80% 1RM in BP and SQ, on 8 random order sessions performed every 6–7 days. Velocity against the load that elicited a ∼1.00 m·s−1 (V1 m·s−1 load) was measured before and immediately after each MNR test, and it was considered a measure of acute muscle fatigue. The number of repetitions completed against each relative load showed high interindividual variability in both BP (coefficient of variation [CV]: 15–22%) and SQ (CV: 26–34%). Strong relationships were found between the relative loss of velocity in the set and the percentage of performed repetitions in both exercises (R 2 = 0.97 and 0.93 for BP and SQ, respectively). Equations to predict repetitions left in reserve from velocity loss are provided. For a given magnitude of velocity loss within the set (15–65%), the percentages of performed repetitions were lower for the BP compared with the SQ for all loads analyzed. Acute fatigue after each set to failure was found dependent on the magnitude of velocity loss (r = 0.97 and 0.99 for BP and SQ, respectively) but independent of the number of repetitions completed by each participant (p > 0.05) for both exercises. The percentage of velocity loss against the V1 m·s−1 load decreased as relative load increased, being greater for BP than SQ. These findings indicate that monitoring repetition velocity can be used to provide a very good estimate of the number (or percentage) of repetitions actually performed and those left in reserve in each exercise set, and thus to more objectively quantify the level of effort incurred during resistance training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.