Syzygium aromaticum has a diversity of biological activities due to the chemical compounds found in its plant products such as total phenolic compounds and flavonoids. The present work describes the chemical analysis and antimicrobial, antioxidant, and antitrypanosomal activity of the essential oil of S. aromaticum. Eugenol (53.23%) as the major compound was verified by gas chromatography-mass spectrometry. S. aromaticum essential oil was more effective against S. aureus (MIC 50 μg/mL) than eugenol (MIC 250 μg/mL). Eugenol presented higher antioxidant activity than S. aromaticum essential oil, with an EC50 of 12.66 and 78.98 µg/mL, respectively. S. aromaticum essential oil and eugenol exhibited Trypanosoma cruzi inhibitory activity, with IC50 of 28.68 ± 1.073 and 31.97 ± 1.061 μg/mL against epimastigotes and IC50 of 64.51 ± 1.658 and 45.73 ± 1.252 μg/mL against intracellular amastigotes, respectively. Both compounds presented low cytotoxicity, with S. aromaticum essential oil displaying 15.5-fold greater selectivity for the parasite than the cells. Nitrite levels in T. cruzi-stimulated cells were reduced by essential oil (47.01%;
p
= 0.002) and eugenol (48.05%;
p
= 0.003) treatment. The trypanocidal activity of S. aromaticum essential oil showed that it is reasonable to use it in future research in the search for new therapeutic alternatives for trypanosomiasis.
The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin’s antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.
Aniba rosaeodora is one of the most widely used plants in the perfumery industry, being used as medicinal plant in the Brazilian Amazon. This work aimed to evaluate the chemical composition of A. rosaeodora essential oil and its biological activities. A. rosaeodora essential oil presented linalool (93.60%) as its major compound. The A. rosaeodora essential oil and linalool showed activity against all the bacteria strains tested, standard strains and marine environment bacteria, with the lower minimum inhibitory concentration being observed for S. aureus. An efficient antioxidant activity of A. rosaeodora essential oil and linalool (EC50: 15.46 and 6.78 µg/mL, respectively) was evidenced by the inhibition of the 2,2-azinobis- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical. The antitrypanosomal activity of A. rosaeodora essential oil and linalool was observed at high concentrations against epimatigote forms (inhibitory concentration for 50% of parasites (IC50): 150.5 ± 1.08 and 198.6 ± 1.12 µg/mL, respectively), and even higher against intracellular amastigotes of T. cruzi (IC50: 911.6 ± 1.15 and 249.6 ± 1.18 µg/mL, respectively). Both A. rosaeodora essential oil and linalool did not exhibit a cytotoxic effect in BALB/c peritoneal macrophages, and both reduced nitrite levels in unstimulated cells revealing a potential effect in NO production. These data revealed the pharmacological potential of A. rosaeodora essential oil and linalool, encouraging further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.