The production of ecosystem goods and services has increased significantly in the last 100 years, while the capacity of ecosystems to generate supporting and regulating services has decreased. In this context, agriculture and livestock production have become major concerns. At the same time, livestock, particularly dairy cows, play a key role and can serve to improve ecosystems, production, and rural livelihoods. We randomly selected and conducted semistructural interviews with 61 dairy family farmers from four cooperatives in the Encosta da Serra Geral Region of the Atlantic rainforest in Santa Catarina, Brazil. The goal was to analyze their production and viewpoints about environmental variables after adopting management-intensive grazing (MIG). The overall results showed that when farmers changed from semi-confinement and continuous grazing to MIG they perceived improvements in production, livelihoods, and ecosystem services. Moreover, according to farmers' insights, MIG could be a tool to increase water and soil quality, animal health, alleviate poverty, and complement Brazilian conservation efforts. 995 Downloaded by [Michigan State University] at 08:47 23 March 2015 996 J. P. Alvez et al.
The demand for dairy products from grass-fed cows is driven, in part, by their more desirable fatty acid (FA) profile, containing more n-3 FA and conjugated linoleic acids (CLA) than conventionally produced dairy products. This study investigated the effects of pearl millet (PM) vs. cool-season pasture (CSP) on animal performance and milk FA in a grazing system. Eight Holstein dairy cows were used in a repeated measures design with four-week periods. Forage type had no effect on animal performance (estimated dry matter intake, milk production, fat, or protein). The contents of CLA and n-3 FA in a serving of whole milk (3.25% fat) increased when cows grazed CSP compared to PM. A serving of whole milk from cows grazing PM had a higher content of saturated FA and branched-chain FA. In conclusion, the contents of various bioactive FA were higher in milk fat of cows grazing a CSP compared to PM.
Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP (P < 0.05), while protozoa of the genus Eudiplodinium were more abundant during CSP than PM (P < 0.05). Microbial cellular FA profiles differed between treatments. Bacteria and protozoa from cows grazing CSP contained more n-3 FA (P < 0.001) and vaccenic acid (P < 0.01), but lower proportions of branched-chain FA (P < 0.05). Microbial FA correlated with microbial taxa and levels of vaccenic acid, rumenic acid, and α-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile.
Restoration Notes have been a distinguishing feature of Ecological Restoration for more than 25 years. This section is geared toward introducing innovative research, tools, technologies, programs, and ideas, as well as providing short-term research results and updates on ongoing efforts. Please direct submissions and inquiries to the editorial staff (ERjournal@ aesop.rutgers.edu).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.