Infection of Nile tilapia Oreochromis niloticus by monogeneans of the genus Cichlidogyrus is harmful. Currently, diagnosis of this infection is based on invasive techniques and the identification of isolated parasites by their morphology. To facilitate diagnosis, we have developed a non-lethal polymerase chain reaction (PCR) test for detection of Cichlidogyrus spp. DNA in the gill mucus of O. niloticus, using 5 pairs of specific primers based on Cichlidogyrus sclerosus 28S rRNA (Cicly 1 to Cicly 5) which generate fragments of approximately 188, 180, 150, 159 and 189 bp, respectively. PCR specificity was tested using genomic DNA extracted individually from 175 isolated Cichlidogyrus spp., 75 Gyrodactylus cichlidarum and 75 endopararasitic Enterogyrus spp., as well as from 75 protozoans Trichodina spp. The Cicly primers were used to detect Cichlidogyrus spp. DNA in mucus from the gills of 23 Nile tilapia confirmed to be infected with the parasite. Negative controls consisted of 45 uninfected Nile tilapia. The limit of sensitivity of the assay was 1.2 ng of purified parasite DNA. The Cicly primers did not amplify DNA from the mucus of non-infected Nile tilapia, G. cichlidarum, Trichodina spp. or Enterogyrus spp. In all cases, the sensitivity and specificity of the test were 100%. The sequences of all the amplified fragments showed a high similarity to that of the 28S rRNA region of C. sclerosus (93 to 100% identical to GenBank Accession No. DQ157660.1). We provide evidence for a safe and noninvasive DNA-based diagnostic method for the presence of Cichlidogyrus in the gill mucus of O. niloticus. KEY WORDS: Diagnosis · Ectoparasite · Monogenean · PCRResale or republication not permitted without written consent of the publisher
BackgroundThe protozoan Perkinsus marinus (Mackin, Owen & Collier) Levine, 1978 causes perkinsosis in the American oyster Crassostrea virginica Gmelin, 1791. This pathogen is present in cultured C. virginica from the Gulf of Mexico and has been reported recently in Saccostrea palmula (Carpenter, 1857), Crassostrea corteziensis (Hertlein, 1951) and Crassostrea gigas (Thunberg, 1793) from the Mexican Pacific coast. Transportation of fresh oysters for human consumption and repopulation could be implicated in the transmission and dissemination of this parasite across the Mexican Pacific coast. The aim of this study was two-fold. First, we evaluated the P. marinus infection parameters by PCR and RFTM (Ray’s fluid thioglycollate medium) in C. virginica from four major lagoons (Términos Lagoon, Campeche; Carmen-Pajonal-Machona Lagoon complex, Tabasco; Mandinga Lagoon, Veracruz; and La Pesca Lagoon, Tamaulipas) from the Gulf of Mexico. Secondly, we used DNA sequence analyses of the ribosomal non-transcribed spacer (rNTS) region of P. marinus to determine the possible translocation of this species from the Gulf of Mexico to the Mexican Pacific coast.Results Perkinsus marinus prevalence by PCR was 57.7% (338 out of 586 oysters) and 38.2% (224 out of 586 oysters) by RFTM. The highest prevalence was observed in the Carmen-Pajonal-Machona Lagoon complex in the state of Tabasco (73% by PCR and 58% by RFTM) and the estimated weighted prevalence (WP) was less than 1.0 in the four lagoons. Ten unique rDNA-NTS sequences of P. marinus [termed herein the “P. marinus (Pm) haplotype”] were identified in the Gulf of Mexico sample. They shared 96–100% similarity with 18 rDNA-NTS sequences from the GenBank database which were derived from 16 Mexican Pacific coast infections and two sequences from the USA. The phylogenetic tree and the haplotype network showed that the P. marinus rDNA-NTS sequences from Mexico were distant from the rDNA-NTS sequences of P. marinus reported from the USA. The ten rDNA-NTS sequences described herein were restricted to specific locations displaying different geographical connections within the Gulf of Mexico; the Carmen-Pajonal-Machona Pm1 haplotype from the state of Tabasco shared a cluster with P. marinus isolates reported from the Mexican Pacific coast.ConclusionsThe rDNA-NTS sequences of P. marinus from the state of Tabasco shared high similarity with the reference rDNA-NTS sequences from the Mexican Pacific coast. The high similarity suggests a transfer of oysters infected with P. marinus from the Mexican part of the Gulf of Mexico into the Mexican Pacific coast.
Panulirus argus virus 1 (PaV1), a pathogenic virus that specifically attacks Caribbean spiny lobsters Panulirus argus, was recently detected in newly settled postlarvae of P. argus. As PaV1 appears not to be vertically transmitted, infected postlarvae likely acquire PaV1 from the water, but whether this can occur in oceanic waters where the planktonic larvae (phyllosomata) metamorphose into nektonic postlarvae remains unknown. Late-stage phyllosomata and postlarvae of P. argus were collected at distances of 2 to 100 km from the Caribbean coast of Mexico in 2 oceanographic cruises. Most postlarvae were caught in the upper meter of water, usually along with masses of floating Sargassum algae. A PaV1-PCR assay was used to test 169 phyllosomata (stages VI−X) and 239 postlarvae. All phyllosomata tested negative, but 2 postlarvae, 1 from each cruise, tested positive for PaV1. These postlarvae were collected at 55 and 48 km offshore over depths of 850 and 1800 m, respectively, suggesting that postlarvae can acquire PaV1 in offshore waters. We hypothesize that floating Sargassum may be an environmental reservoir for PaV1. The PaV1 allele (460 pb) found in an infected postlarva was more closely related to PaV1 alleles found in lobsters from Puerto Rico than in lobsters from any other location (including Mexico), suggesting high gene flow and long-distance dispersal of PaV1, consistent with previous studies of high genetic connectivity across the Caribbean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.