Comprehensive Geria.tcic Assessment ( CGA) is an integrated clinical process to evaluate the frailty of elderly persons in order to create therapy plans that improve their quality of life. For robotizing these tests, we are designing and developing CLA RC, a mobile robot able to help the physician to capture and manage data during the CGA procedures, mainly by autonomously conducting a set of predefined evaluation tests. Built around a shared internal representation of the outer world, the architecture is composed of softwa,r e modules able to plan and generate a stream of actions, t.o execute actions emanated from the representation or to update this by including/removing items at different abstraction levels. Percepts, actions and intentfons ooming from all software modules are grounded within th.is unique representation. This allows the robot to react to unexpected events and to modify the course of action accord ing to the dynamics of a scenario built around the interaction with the patient. The paper describes the architecture of the system as well as the preliminary user studies and evaluation to gather new user requirements.
Learning by imitation is a natural and intuitive way to teach social robots new behaviors. While these learning systems can use different sensory inputs, vision is often their main or even their only source of input data. However, while many vision-based robot learning by imitation (RLbI) architectures have been proposed in the last decade, they may be difficult to compare due to the absence of a common, structured description. The first contribution of this survey is the definition of a set of standard components that can be used to describe any RLbI architecture. Once these components have been defined, the second contribution of the survey is an analysis of how different vision-based architectures implement and connect them. This bottom–up, structural analysis of architectures allows to compare different solutions, highlighting their main advantages and drawbacks, from a more flexible perspective than the comparison of monolithic systems.
Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost.
CORTEX is a cognitive robotics architecture inspired by three key ideas: modularity, internal modelling and graph representations. CORTEX is also a computational framework designed to support early forms of intelligence in real world, human interacting robots, by selecting an a priori functional decomposition of the capabilities of the robot. This set of abilities was then translated to computational modules or agents, each one built as a network of software interconnected components. The nature of these agents can range from pure reactive modules connected to sensors and/or actuators, to pure deliberative ones, but they can only communicate with each other through a graph structure called Deep State Representation (DSR). DSR is a shortterm dynamic representation of the space surrounding the robot, the objects and the humans in it, and the robot itself. All these entities are perceived and transformed into different levels of abstraction, ranging from geometric data to high-level symbolic relations such as "the person is talking and gazing at me". The combination of symbolic and geometric information endows the architecture with the potential to simulate and anticipate the outcome of the actions executed by the robot. In this paper we present recent advances in the CORTEX architecture and several real-world human-robot interaction scenarios in which they have been tested. We describe our interpretation of the ideas inspiring the architecture and the reasons why this specific computational framework is a promising architecture for the social robots of tomorrow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.