The main goal of this work is to compare pyramidal structures proposed to solve segmentation tasks. Segmentation algorithms based on regular and irregular pyramids are described, together with the data structures and decimation procedures which encode and manage the information in the pyramid. In order to compare the different segmentation algorithms, we have employed three types of quality measurements: the shift variance measure, the F function and the Q function.
In this paper we present a system that can synthesise novel motion sequences from a database of motion capture examples. This is achieved through learning a statistical model from the captured data which enables realistic synthesis of new movements by sampling the original captured sequences. New movements are synthesised by specifying the start and end keyframes. The statistical model identifies segments of the original motion capture data to generate novel motion sequences between the keyframes. The advantage of this approach is that it combines the flexibility of keyframe animation with the realism of motion capture data.
The 3D Tune-In Toolkit (3DTI Toolkit) is an open-source standard C++ library which includes a binaural spatialiser. This paper presents the technical details of this renderer, outlining its architecture and describing the processes implemented in each of its components. In order to put this description into context, the basic concepts behind binaural spatialisation are reviewed through a chronology of research milestones in the field in the last 40 years. The 3DTI Toolkit renders the anechoic signal path by convolving sound sources with Head Related Impulse Responses (HRIRs), obtained by interpolating those extracted from a set that can be loaded from any file in a standard audio format. Interaural time differences are managed separately, in order to be able to customise the rendering according the head size of the listener, and to reduce comb-filtering when interpolating between different HRIRs. In addition, geometrical and frequency-dependent corrections for simulating near-field sources are included. Reverberation is computed separately using a virtual loudspeakers Ambisonic approach and convolution with Binaural Room Impulse Responses (BRIRs). In all these processes, special care has been put in avoiding audible artefacts produced by changes in gains and audio filters due to the movements of sources and of the listener. The 3DTI Toolkit performance, as well as some other relevant metrics such as non-linear distortion, are assessed and presented, followed by a comparison between the features offered by the 3DTI Toolkit and those found in other currently available open- and closed-source binaural renderers.
Learning by imitation is a natural and intuitive way to teach social robots new behaviors. While these learning systems can use different sensory inputs, vision is often their main or even their only source of input data. However, while many vision-based robot learning by imitation (RLbI) architectures have been proposed in the last decade, they may be difficult to compare due to the absence of a common, structured description. The first contribution of this survey is the definition of a set of standard components that can be used to describe any RLbI architecture. Once these components have been defined, the second contribution of the survey is an analysis of how different vision-based architectures implement and connect them. This bottom–up, structural analysis of architectures allows to compare different solutions, highlighting their main advantages and drawbacks, from a more flexible perspective than the comparison of monolithic systems.
The Bounded Irregular Pyramid (BIP) is a mixture of regular and irregular pyramids whose goal is to combine their advantages. Thus, its data structure combines a regular decimation process with a union-find strategy to build the successive levels of the structure. The irregular part of the BIP allows to solve the main problems of regular structures: their inability to preserve connectivity or to represent elongated objects. On the other hand, the BIP is computationally efficient because its height is constrained by its regular part. In this paper the features of the Bounded Irregular Pyramid are discussed, presenting a comparison with the main pyramids present in the literature when applied to a colour segmentation task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.