The main goal of this work is to compare pyramidal structures proposed to solve segmentation tasks. Segmentation algorithms based on regular and irregular pyramids are described, together with the data structures and decimation procedures which encode and manage the information in the pyramid. In order to compare the different segmentation algorithms, we have employed three types of quality measurements: the shift variance measure, the F function and the Q function.
Comprehensive Geria.tcic Assessment ( CGA) is an integrated clinical process to evaluate the frailty of elderly persons in order to create therapy plans that improve their quality of life. For robotizing these tests, we are designing and developing CLA RC, a mobile robot able to help the physician to capture and manage data during the CGA procedures, mainly by autonomously conducting a set of predefined evaluation tests. Built around a shared internal representation of the outer world, the architecture is composed of softwa,r e modules able to plan and generate a stream of actions, t.o execute actions emanated from the representation or to update this by including/removing items at different abstraction levels. Percepts, actions and intentfons ooming from all software modules are grounded within th.is unique representation. This allows the robot to react to unexpected events and to modify the course of action accord ing to the dynamics of a scenario built around the interaction with the patient. The paper describes the architecture of the system as well as the preliminary user studies and evaluation to gather new user requirements.
The Bounded Irregular Pyramid (BIP) is a mixture of regular and irregular pyramids whose goal is to combine their advantages. Thus, its data structure combines a regular decimation process with a union-find strategy to build the successive levels of the structure. The irregular part of the BIP allows to solve the main problems of regular structures: their inability to preserve connectivity or to represent elongated objects. On the other hand, the BIP is computationally efficient because its height is constrained by its regular part. In this paper the features of the Bounded Irregular Pyramid are discussed, presenting a comparison with the main pyramids present in the literature when applied to a colour segmentation task.
One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.