The exploitation of both conventional and unconventional hydrocarbons may lead to still not well-known environmental consequences such as ground deformation and induced/triggered seismicity. Identifying and characterizing these effects is fundamental for prevention or mitigation purposes, especially when they impact populated areas. Two case studies of such effects on hydrocarbon-producing basins in Argentina, the Neuquén and the Golfo de San Jorge, are presented in this work. The intense hydrocarbon production activities in recent years and their potential link with the occurrence of two earthquakes of magnitude 4.9 and 5 near the operating well fields is assessed. A joint analysis of satellite radar interferometry and records of fluid injection and extraction demonstrate that, between 2017 and 2020, vertical ground displacements occurred in both study areas over active well fields that might indicate a correlation to hydrocarbon production activities. Coseismic deformation models of the two earthquakes constrain source depths to less than 2 km. The absence of seismicity before the beginning of the hydrocarbon activities in both areas, and the occurrence of the two largest and shallow earthquakes in the vicinity of the active well fields just after intensive production periods, points towards the potential association between both phenomena.
<p>The Central Valley, Costa Rica, is subject to moderate seismicity, related to the Central Costa Rica Deformation Belt: a region with diffuse deformation, where Caribbean, Cocos and Nazca Plates, as well as the Panama Micro-plate, interact. &#160;The Eastern part of the valley is dominated by the Aguacaliente-Navarro fault system. The city of Cartago was destroyed by an earthquake Ms 6.4 in 1910, associated with the rupture of the Aguacaliente fault. Volcanic unrest &#8211;mainly in Turrialba Volcano, with recent activity reported- is present in the area, thus resulting in a very complex interaction zone, where seismic hazard studies are crucial.</p><p>In this context, we process GNSS observations from five different campaigns -2012, 2014, 2016, 2018 and 2020- in 13 stations in the area, in order to estimate their Caribbean-fixed velocities, hence the regional cumulative strain. Additionally, we use both InSAR and GNSS data to measure volcanic deformation, aiming to refine the computed velocities by removing volcanic deformation from the tectonic signal.</p><p>The refined velocities allow us to asses a more precise cumulative strain for the Aguacaliente-Navarro fault system, which is useful to improve seismic hazard assessment in Cartago, one of the most important cities in the region.</p>
<p>The country of El Salvador lies on an active tectonic margin, where the Cocos plate is subducting under the Caribbean plate. A crustal fault system, the El Salvador Fault Zone (ESFZ), crosses the country from East to West through the Central American Volcanic Arc, accommodating more than 1 cm/yr of differential deformation between the Chort&#237;s block and the volcanic forearc sliver.&#160;</p> <p>Here we use GNSS and interferometric synthetic aperture radar (InSAR) data to measure interseismic ground deformation across ESFZ. We have processed and updated GNSS data in more than 110 continuous and episodic stations in the region. GNSS results have been useful for determining the broad pattern of the tectonic signal in the area. However, they are scarce and unable to characterise complex behaviour in the intra-fault basins.</p> <p>SAR data acquired by the ALOS PALSAR L-band satellite (2006-2011), for both the ascending and descending tracks covering El Salvador, were used to form interferograms with a Small Baseline (SBAS) approach. The time series and average velocity were computed. The average coherence obtained for the area is overall good, and the results are coherent with the regional tectonics.&#160;</p>
The El Salvador Fault Zone (ESFZ) comprises a set of a strike-slip faults, extending through the Central American VolcanicArc within El Salvador, where the Cocos plate subducts under the Caribbean plate. These structures act as a boundarybetween the forearc sliver and the western margin of the Chortís block, accommodating the relative movement betweenthem. The ESFZ has been responsible for several shallow, destructive earthquakes in El Salvador, thus posing a seriousthreat for millions of inhabitants. Understanding its seismic potential and the behaviour of its different segments results ofgreat importance for the assessment and mitigation of seismic risk in the region. Geodetic techniques, such as GNSS andInSAR, are useful tools for measuring surface deformation related to tectonic activity. We are in the process of updatingand densifying the existing GNSS velocity field in El Salvador, aiming to characterise the individual faults in the region bydetermining their slip rates and locking depth. Additionally, we will process InSAR data, trying to obtain a continuousmeasurement of the interseismic deformation. The combination of this information with other data (e.g. seismological andgeological) through kinematic models will allow us to better understand the factors controlling the seismogenic behaviourof the ESFZ faults, evaluate their seismic potential and improve the seismic hazard assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.