Background: Functional fitness training (FFT) is a new exercise modality that targets functional multi-joint actions via both muscle-strengthening exercises and aerobic training intervals. The aim of the study was to examine muscle recovery over a 20 min period after an FFT workout in trained adults. Materials and methods: Participants were 28 healthy trained subjects. In a single session, a countermovement jump (CMJ) was performed to determine several mechanical variables (jump height, maximum velocity, power) before (preFFT) and 4, 10, and 20 min after the FFT workout (postFFT). In parallel, capillary blood lactate concentrations were measured pre- and 3 min postFFT. Heart rate was also measured before and after the workout, and perceived exertion was measured postFFT. Results: Significant differences between the time points preFFT and 4 min and 10 min postFFT, respectively, were produced in jump height (p = 0.022, p = 0.034), maximum velocity (p = 0.016, p = 0.005), average power relative (p = 0.018, p = 0.049), and average power total (p = 0.025, p = 0.049). No differences were observed in any of the variables recorded preFFT and 20 min postFFT. Conclusions: While mechanical variables indicating muscle fatigue were reduced 4 and 10 min postFFT, pre-exercise jump ability only really started to recover 20 min after FFT although not reaching pre-exercise levels. This means that ideally intervals of around 20 min of rest should be implemented between training bouts.
Empirically, it is widely discussed in “Cross” modalities that the pacing strategy developed by an athlete or trainee has a significant impact on the endurance performance in a WOD in the AMRAP, EMOM, or FOR TIME model. We can observe at least six pacing strategies adopted during the cyclical modalities in the endurance performance in the scientific literature. However, besides these modalities, exercises of acyclical modalities of weightlifting and gymnastics are performed in the “Cross” modalities. These exercises may not allow the same pacing strategies adopted during cyclic modalities’ movements due to their motor characteristics and different intensity and level of effort imposed to perform the motor gesture. In addition to the intensity and level of effort that are generally unknown to the coach and athlete of the “Cross” modalities, another factor that can influence the adoption of a pacing strategy during a WOD in the AMRAP, EMOM, or FOR TIME model is the task endpoint knowledge, which varies according to the training model used. Thus, our objective was to evaluate situations in which these factors can influence the pacing strategies adopted in a self-regulated task with cyclic and acyclic modalities movements during an endurance workout in the AMRAP, EMOM, and FOR TIME model. Given the scarcity of studies in the scientific literature and the increasing discussion of this topic within the “Cross” modalities, this manuscript can help scientists and coaches better orient their research problems or training programs and analyze and interpret new findings more accurately.
Background: The aim of the study was to analyze the use of variables such as % of one-repetition maximum (1RM) and number of maximal repetitions (xRM) with execution velocity to define and control the intensity of resistance training in bench press exercise. Hence, exercise professionals will achieve better control of training through a greater understanding of its variables. Methods: In this cross-sectional study, fifty male physical education students were divided into four groups according to their relative strength ratio (RSR) and performed a 1RM bench press test (T1). In the second test, participants performed repetitions to exhaustion (T2), using a relative load corresponding to 70% 1RM determined through the mean propulsive velocity (MPV) obtained from the individual load–velocity relationship. This same test was repeated a week later (T3). Tests were monitored according to the MPV of each repetition and blood lactate values (LACT). Results: Regarding MPV, the best (fastest) repetition of the set (MPVrep Best) values were similar between groups (0.62 m·s−1–0.64 m·s−1), with significant differences in relation to the high RSR group (p < 0.001). The average maximum number of repetitions (MNR) was 12.38 ± 2.51, with no significant differences between the RSR groups. Nonetheless, significant variation existed between groups with regards to MNR (CV: 13–29%), with greater variability in the group corresponding to the lowest RSR values (CV: 29%). The loss of velocity in the MNR test in the different groups was similar (p > 0.05). Average LACT values (5.72 mmol·L−1) showed significant differences between the Medium RSR and Very Low RSR groups. No significant differences were found (p > 0.05) between T2 and T3 with regards to MNR, MPVrep Best, or MPVrep Last, with little variability seen between participants. Conclusions: The use of variables such as the 1RM, estimated using an absolute load value, or an MNR do not allow an adequate degree of precision to prescribe and control the relative intensity of resistance training. Besides, execution velocity control can offer an adequate alternative to guarantee an accurate prescription of intensity with regard to resistance training.
Background: the aim of this study was to analyse muscle fatigue and metabolic stress at 15 min of recovery after performing two independent sessions of functional fitness training (FFT): a session of strength functional fitness training (FFTstrength) and a session of endurance functional fitness training (FFTendurance). Methods: eighteen well-trained men conducted two protocols, separated by one week of rest: FFTstrength (3 sets of 21, 15 and 9 repetitions of Thruster with bar + Pull ups) and FFTendurance (3 sets × (30 kcal rowing + 15 kcal assault air bike)). Neuromuscular fatigue and metabolic stress were measured right before, right after and at 10 and 15 min after completing the FFT workout, as well as the mean heart rate (HRmean) and the rating of perceived exertion (RPE) at the end of the FFT. Results: FFTendurance recovered the velocity loss values after 15 min of recovery. On the other hand, FFTstrength only recovered velocity in the 1 m·s−1 Tests in squat (SQ), since the velocity levels were 7% lower in the 1 m·s−1 Tests in military press exercise (MP) after 15 min. Conclusions: These data indicate that there are specific recovery patterns not only as a function of the exercise and the body regions involved, but also regarding the recovery of neuromuscular and metabolic factors, since both FFT workouts obtained high blood lactate concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.