Increasing atmospheric CO(2) levels have generated much concern, driving the ongoing carbon sequestration effort. A compelling CO(2) sequestration option is its photocatalytic conversion to hydrocarbons, for which the use of solar irradiation represents an ultimate solution. Here we report a new strategy of using surface-functionalized small carbon nanoparticles to harvest visible photons for subsequent charge separation on the particle surface in order to drive the efficient photocatalytic process. The aqueous solubility of the catalysts enables photoreduction under more desirable homogeneous reaction conditions. Beyond CO(2) conversion, the nanoscale carbon-based photocatalysts are also useful for the photogeneration of H(2) from water under similar conditions.
The carbon dots in this study were small carbon nanoparticles with the particle surface functionalized by oligomeric poly(ethylene glycol) diamine molecules. Upon photoexcitation, the brightly fluorescent carbon dots in aqueous solution served the function of excellent electron donors to reduce platinum(IV) and gold(III) compounds into their corresponding metals to be deposited on the dot surface. The deposited metals even in very small amounts were found to have dramatic quenching effects on the fluorescence emission intensities, but essentially no effects on the observed fluorescence decays. The obviously exclusive near-neighbor static quenching could be attributed to the disruption of electron-hole radiative recombinations (otherwise responsible for the fluorescence emissions in carbon dots). The results provide important evidence for the availability of photogenerated electrons that could be harvested for productive purposes, which in turn supports the current mechanistic framework on fluorescence emission and photoinduced redox properties of carbon dots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.