Abstract:Upper North Grain (UNG) is a heavily eroding blanket peat catchment in the Peak District, southern Pennines, UK. Concentrations of lead in the near-surface peat layer at UNG are in excess of 1000 mg kg 1 . For peatland environments, these lead concentrations are some of the highest globally. High concentrations of industrially derived, atmospherically transported magnetic spherules are also stored in the near-surface peat layer. Samples of suspended sediment taken during a storm event that occurred on 1 November 2002 at UNG, and of the potential catchment sources for suspended sediments, were analysed for lead content and the environmental magnetic properties of anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM). At the beginning of the storm event, there is a peak in both suspended sediment and associated lead concentration. SIRM/ARM values for suspended sediment samples throughout the storm reveal that the initial 'lead flush' is associated with a specific sediment source, namely that of organic sediment eroded from the upper peat layer. Using the magnetic 'fingerprinting' approach to discrimination of sediment sources, this study reveals that erosion of the upper peat layer at UNG is releasing high concentrations of industrially derived lead (and, by inference, other toxic heavy metals associated with industrial particulates) into the fluvial systems of the southern Pennines. Climate-change scenarios for the UK, involving higher summer temperatures and stormier winters, may result in an increased flux both of sediment-associated and dissolved heavy metals from eroding peatland catchments in the southern Pennines, adversely affecting the quality of sediment and water entering reservoirs of the region.
It has been reported that lidocaine is toxic to various types of cells. And a recent study has confirmed that lidocaine exerts a demethylation effect and regulates the proliferation of human breast cancer cell lines. To recognize a potential anti-tumor effect of lidocaine, we evaluated the DNA demethylation by lidocaine in human breast cancer lines, MCF-7 and MDA-MB-231 cells, and determined the influence of demethylation on the toxicity to these cells of cisplatin, which is a commonly utilized anti-tumor agent for breast cancer. Results demonstrated that lidocaine promoted a significant global genomic demethylation, and particularly in the promoters of tumor suppressive genes (TSGs), RARβ2 and RASSF1A. Further, the lidocaine treatment increased cisplatin-induced apoptosis and enhanced cisplatin-induced cytotoxicity. The combined treatment with both lidocaine and cisplatin promoted a significantly higher level of MCF-7 cell apoptosis than singular lidocaine or cisplatin treatment. Moreover, the abrogation of RARβ2 or RASSF1A expression inhibited such apoptosis. In conclusion, the present study confirms the demethylation effect of lidocaine in breast cancer cells, and found that the demethylation of RARβ2 and RASSF1A sensitized the cytotoxicity of cisplatin in breast cancer cells.
Catastrophic failures of blanket bogs, involving the escape and outflow of large volumes of semi-liquid basal peat, are well-known phenomena in Ireland but have only very rarely been reported from elsewhere in the world. Their precise causes and mechanisms are as yet unclear. The liquid limit (w L ) was identified as a potentially useful indicator of the susceptibility of peat to such failure because peat has extremely high natural water contents and, as an index property, w L takes no account of the properties or structures of highly heterogeneous intact peat. However, the usual procedure for determining the w L of peat is not fully standardised. Prepared samples will normally include potentially highly reactive particles of disrupted fibres and wood fragments that would not be present in such freshly disintegrated form in the field. This paper presents results from w L determinations of peat obtained from the scar margins of three bog failures in northwest Ireland, using four different test procedures including a method involving wet-sieving of the peat to separate the humified <425-μm fraction for testing without incorporating artificially fragmented particles of fibres. The sampled peat was classified as H 8 -H 10 according to the von Post humification scale. The fibre contents varied between the sites, but the ash contents were <3% in all but one test sample, and bulk densities (dry and field-wet) of the peat from all three sites were almost identical. w L results from the wet-sieving method were 708-785%, compared with 633-980% from the standard method. The highest measured field water contents exceeded the wet-sieved w L for all three of the field sites. Tests of cone penetration into intact peat cores demonstrated the influence of the reinforcing effect of in situ fibres. The results strongly suggest the need to adopt a fully standardised procedure for determining the w L of peat. Additional shear vane measurements of intact and remoulded peat from a bog failure in Northern Ireland indicated a very high 'strength sensitivity'. This leads to the suggestion that a slight disturbance of basal peat can lead to a loss of strength that rapidly propagates as local stresses change and cause further remoulding as water contents exceed w L .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.