Background Intracranial-pressure monitoring is considered the standard of care for severe traumatic brain injury and is used frequently, but the efficacy of treatment based on monitoring in improving the outcome has not been rigorously assessed. Methods We conducted a multicenter, controlled trial in which 324 patients 13 years of age or older who had severe traumatic brain injury and were being treated in intensive care units (ICUs) in Bolivia or Ecuador were randomly assigned to one of two specific protocols: guidelines-based management in which a protocol for monitoring intra-parenchymal intracranial pressure was used (pressure-monitoring group) or a protocol in which treatment was based on imaging and clinical examination (imaging–clinical examination group). The primary outcome was a composite of survival time, impaired consciousness, and functional status at 3 months and 6 months and neuro-psychological status at 6 months; neuropsychological status was assessed by an examiner who was unaware of protocol assignment. This composite measure was based on performance across 21 measures of functional and cognitive status and calculated as a percentile (with 0 indicating the worst performance, and 100 the best performance). Results There was no significant between-group difference in the primary outcome, a composite measure based on percentile performance across 21 measures of functional and cognitive status (score, 56 in the pressure-monitoring group vs. 53 in the imaging–clinical examination group; P = 0.49). Six-month mortality was 39% in the pressure-monitoring group and 41% in the imaging–clinical examination group (P = 0.60). The median length of stay in the ICU was similar in the two groups (12 days in the pressure-monitoring group and 9 days in the imaging–clinical examination group; P = 0.25), although the number of days of brain-specific treatments (e.g., administration of hyperosmolar fluids and the use of hyperventilation) in the ICU was higher in the imaging–clinical examination group than in the pressure-monitoring group (4.8 vs. 3.4, P = 0.002). The distribution of serious adverse events was similar in the two groups. Conclusions For patients with severe traumatic brain injury, care focused on maintaining monitored intracranial pressure at 20 mm Hg or less was not shown to be superior to care based on imaging and clinical examination. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01068522.)
Mortality from severe TBI is high in Latin American LMIC, although the rate of favorable recovery is similar to that of high-income countries. Demographic factors such as race and study site played an outsized role in predicting outcome; further research is required to understand these associations.
A temporary acute unilateral enlargement of the parotid gland or "anesthesia mumps" has been described in both surgical and anesthesia literature. It has been described in elderly, dehydrated, poorly nourished, and post-operative patients. We present a 5-year-old patient who underwent a left temporal craniotomy for seizure focus resection and quadriceps muscle biopsy. Immediately post procedure, he was noted to have an acute unilateral enlargement of the right parotid gland. We report acute unilateral parotitis as a possible, but uncommon, complication of positioning in the pediatric population and to discuss possible pathophysiology and prevention, as well as a review of the available literature.
Objective The aim of this study is to determine feasibility of incorporating three-dimensional (3D) tractography into routine skull base surgery planning and analyze our early clinical experience in a subset of anterior cranial base meningiomas (ACM). Methods Ninety-nine skull base endonasal and transcranial procedures were planned in 94 patients and retrospectively reviewed with a further analysis of the ACM subset. Main Outcome Measures (1) Automated generation of 3D tractography; (2) co-registration 3D tractography with computed tomography (CT), CT angiography (CTA), and magnetic resonance imaging (MRI); and (3) demonstration of real-time manipulation of 3D tractography intraoperatively. ACM subset: (1) pre- and postoperative cranial nerve function, (2) qualitative assessment of white matter tract preservation, and (3) frontal lobe fluid-attenuated inversion recovery (FLAIR) signal abnormality. Results Automated 3D tractography, with MRI, CT, and CTA overlay, was produced in all cases and was available intraoperatively. ACM subset: 8 (44%) procedures were performed via a ventral endoscopic endonasal approach (EEA) corridor and 12 (56%) via a dorsal anteromedial (DAM) transcranial corridor. Four cases (olfactory groove meningiomas) were managed with a combined, staged approach using ventral EEA and dorsal transcranial corridors. Average tumor volume reduction was 90.3 ± 15.0. Average FLAIR signal change was –30.9% ± 58.6. 11/12 (92%) patients (DAM subgroup) demonstrated preservation of, or improvement in, inferior fronto-occipital fasciculus volume. Functional cranial nerve recovery was 89% (all cases). Conclusions It is feasible to incorporate 3D tractography into the skull base surgical armamentarium. The utility of this tool in improving outcomes will require further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.