Programmed death ligand 1 (PD-L1, CD274) is an essential immune checkpoint protein that binds to programmed death 1 (PD-1) on T-lymphocytes. T cell plays a critical role in killing cancer cells while the cancer cell exhibits immune escape by the expression of PD-L1. The binding of PD-L1 to PD-1 inhibits T cell proliferation and activity, leading to tumor immunosuppression. Increasing evidence shows that PD-L1 protein undergoes degradation in proteasomes or lysosomes by multiple pathways, leading to enhanced immunotherapy for cancer. Although some specific drugs induce PD-L1 degradation and increase antitumor activity, the combination of these drugs with PD-L1/PD-1 blockade significantly enhances cancer immunotherapy. In this review, we have discussed the interaction of PD-L1 degradation with cancer immunotherapy.
Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC).Here, we investigated the effect of PNI on the microenvironment and how this affects PDAC progression. Transcriptome expression profiles of PDAC tissues with different PNI status were compared, and the intratumoral T cell density and levels of neurotransmitters in these tissues were assessed. PNI was associated with impaired immune responses characterized by decreased CD8+ T and Th1 cells, and increased Th2 cells. Acetylcholine levels were elevated in severe PNI.Acetylcholine impaired the ability of PDAC cells to recruit CD8+ T cells via HDAC1-mediated suppression of CCL5. Moreover, acetylcholine directly inhibited IFN-γ production by CD8+ T cells in a dose-dependent manner, and favored Th2 over Th1 differentiation. Furthermore, hyperactivation of cholinergic signaling enhanced tumor growth by suppressing the intratumoral T cell response in an orthotopic PDAC model. Conversely, blockingResearch.
Background Impaired or hyperactive pancreas regeneration after injury would cause exocrine insufficiency or recurrent / chronic pancreatitis and potentially carcinogenesis. Macrophages are the most abundant immune cells in the regenerative pancreas, however their phenotype and role remain poorly defined. Method Using caerulein-induced acute pancreatitis (AP) model, we examined the dynamic landscape of pancreatic macrophages throughout the acute inflammation to regeneration phases by flow cytometric and RNA-seq analyses. Liposome depletion of macrophages, Il4ra −/− mice as well as inhibitors were used to elucidate the role and regulatory mechanism of macrophages during pancreatic regeneration. Findings We found that M1 macrophages dominated in the pro-inflammatory phase of AP, while M2-like macrophages dominated during pancreas repair/regeneration. Depletion of macrophages at early or late regenerative stage dramatically blocked the acinar-ductal metaplasia (ADM) or delayed inflammation resolution, respectively. Moreover, alternative activation of macrophages was partially dependent on IL-4RA signaling, and ECM/AKT activation in pancreatic macrophages facilitated inflammation resolution during tissue regeneration. Interpretation Our findings illustrate a dynamic phenotype and function of macrophages during AP repair/regeneration, helping us better understand the mechanism of pancreatic regeneration and providing clues for novel therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.