The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy. We further identified multiple independent new susceptibility loci in HLA-C, HLA-B, HLA-DPB1 and BTNL2 and an intergenic variant, rs118179173, associated with psoriasis and confirmed the well-established risk allele HLA-C*06:02. We anticipate that our Han-MHC reference panel built by deep sequencing of a large number of samples will serve as a useful tool for investigating the role of the MHC region in a variety of diseases and thus advance understanding of the pathogenesis of these disorders.
ObjectiveT cell receptor (TCR) diversity determines the autoimmune responses in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and is closely associated with autoimmune diseases prognosis and prevention. However, the characteristics of variations in TCR diversity and their clinical significance is still unknown. Large series of patients must be studied in order to elucidate the effects of these variations.MethodsPeripheral blood from 877 SLE patients, 206 RA patients and 439 healthy controls (HC) were amplified for the TCR repertoire and sequenced using a high-throughput sequencer. We have developed a statistical model to identify disease-associated TCR clones and diagnose autoimmune diseases.ResultsSignificant differences were identified in variable (V), joining (J) and V-J pairing between the SLE or RA and HC groups. These differences can be utilised to discriminate the three groups with perfect accuracy (V: area under receiver operating curve > 0.99). One hundred ninety-eight SLE-associated and 53 RA-associated TCRs were identified and used for diseases classification by cross validation with high specificity and sensitivity. Disease-associated clones showed common features and high similarity between both autoimmune diseases. SLE displayed higher TCR heterogeneity than RA with several organ specific properties. Furthermore, the association between clonal expansion and the concentration of disease-associated clones with disease severity were identified, and pathogen-related TCRs were enriched in both diseases.ConclusionsThese characteristics of the TCR repertoire, particularly the disease-associated clones, can potentially serve as biomarkers and provide novel insights for disease status and therapeutical targets in autoimmune diseases.
The advance of next generation sequencing (NGS) techniques provides an unprecedented opportunity to probe the enormous diversity of the immune repertoire by deep sequencing T-cell receptors (TCRs) and B-cell receptors (BCRs). However, an efficient and accurate analytical tool is still on demand to process the huge amount of data. We have developed a high-resolution analytical pipeline, Immune Monitor ("IMonitor") to tackle this task. This method utilizes realignment to identify V(D)J genes and alleles after common local alignment. We compare IMonitor with other published tools by simulated and public rearranged sequences, and it demonstrates its superior performance in most aspects. Together with this, a methodology is developed to correct the PCR and sequencing errors and to minimize the PCR bias among various rearranged sequences with different V and J gene families. IMonitor provides general adaptation for sequences from all receptor chains of different species and outputs useful statistics and visualizations. In the final part of this article, we demonstrate its application on minimal residual disease detection in patients with B-cell acute lymphoblastic leukemia. In summary, this package would be of widespread usage for immune repertoire analysis.KEYWORDS next generation sequencing; bioinformatics; immune repertoire; TCR/BCR T HE diversity of T-cell receptors (TCRs), B-cell receptors (BCRs), and secreting form antibodies makes up the core of the complicated immune system and serves as pivotal defensive components to protect the body against invading virus, bacteria, and other pathogens. The TCR consists of a heterodimeric ab chain (95%, TRA, TRB) or gd chain (5%), while the BCR is assembled with two heavy chains (IGH) and two light chains (IGK or IGL). Structurally, each chain can be divided into the variable domain and the constant domain (Lefranc and Lefranc 2001a,b). The diversity of the TCR and BCR repertoire is enormous, owing to the process of V(D)J gene rearrangement, random deletion of germline nucleotides, and insertion of uncertain length of nontemplate nucleotides between V-D and D-J junctions (TRB, IGH) or V-J junctions (TRA, IGK, IGL). In humans, it has been estimated theoretically that the diversity of TCR-ab receptors exceeds 10 18 in the thymus, and the diversity of the B-cell repertoire is even larger, considering the somatic hypermutation (Janeway 2005;Benichou et al. 2012). The T-and B-cell repertoire could undergo dynamic changes under different phenotypic status. Recently, deep sequencing enabled by different platforms including Roche 454 and Illumina Hiseq (Freeman et al. 2009;Robins et al. 2009;Wang et al. 2010;Fischer 2011;Venturi et al. 2011) has been applied to unravel the dynamics of the TCR and BCR repertoire and extended to various translational applications such as vaccination, cancer, and autoimmune diseases.Several tools and software have been developed for TCR and BCR sequence analysis, including iHMMune-align (Gaeta et al. 2007), HighV-QEUST (Li et al. 2013), IgBLA...
Background Impaired or hyperactive pancreas regeneration after injury would cause exocrine insufficiency or recurrent / chronic pancreatitis and potentially carcinogenesis. Macrophages are the most abundant immune cells in the regenerative pancreas, however their phenotype and role remain poorly defined. Method Using caerulein-induced acute pancreatitis (AP) model, we examined the dynamic landscape of pancreatic macrophages throughout the acute inflammation to regeneration phases by flow cytometric and RNA-seq analyses. Liposome depletion of macrophages, Il4ra −/− mice as well as inhibitors were used to elucidate the role and regulatory mechanism of macrophages during pancreatic regeneration. Findings We found that M1 macrophages dominated in the pro-inflammatory phase of AP, while M2-like macrophages dominated during pancreas repair/regeneration. Depletion of macrophages at early or late regenerative stage dramatically blocked the acinar-ductal metaplasia (ADM) or delayed inflammation resolution, respectively. Moreover, alternative activation of macrophages was partially dependent on IL-4RA signaling, and ECM/AKT activation in pancreatic macrophages facilitated inflammation resolution during tissue regeneration. Interpretation Our findings illustrate a dynamic phenotype and function of macrophages during AP repair/regeneration, helping us better understand the mechanism of pancreatic regeneration and providing clues for novel therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.