T cell immunoglobulin and ITIM domain (TIGIT) is a recently identified T cell coinhibitory receptor. Studies have shown that TIGIT is expressed in colon adenocarcinoma, uterine corpus endometrioid carcinoma, breast carcinoma and kidney renal clear cell carcinoma. However, the role of the TIGIT/human poliovirus receptor (CD155) pathway in the pathogenesis of hepatocellular carcinoma (HCC) remains to be elucidated. In the present study, the expression of TIGIT and CD155 in HCC tissues and peripheral blood were determined, and correlations among TIGIT, CD155, TIGIT+ CD4+ T cells, TIGIT+ regulatory T (Treg) cells and α-fetoprotein (AFP) were investigated in order to identify a potential target for diagnosing and treating HCC. Immunohistochemistry, reverse transcription-quantitative PCR analysis and western blotting were used to examine the expression of TIGIT and CD155 in cancerous tissues and peripheral blood collected from patients with HCC. The frequency of TIGIT+ CD4+ T cells and TIGIT+ Treg cells and the concentration of inflammatory cytokines secreted by T cell subsets were analyzed by flow cytometry and a Merck Milliplex assay. Correlations between the frequency of TIGIT+ CD4+ T and TIGIT+ Treg cells and AFP were analyzed using Spearman's rank correlation test. With the degree of cancerous differentiation from high to low, the expression levels of TIGIT and CD155 were upregulated in the cancerous tissues from patients with HCC. TIGIT+ CD4+ T cell and TIGIT+ Treg cell frequencies were decreased in peripheral blood from postoperative patients with HCC. The increased expression of TIGIT was positively correlated with the level of AFP. These results indicate that co-inhibitory receptor TIGIT may be involved in the pathogenesis of HCC and represent a novel target for the diagnosis and treatment of HCC.
Colorectal cancer (CRC) is one of the most widespread malignant cancers, with a high incidence and mortality all over the world. Aspirin (ASA) otherwise known as acetylsalicylic acid, is a non‐steroidal anti‐inflammatory drug that has shown promising results in the prevention of chronic diseases, including several cancers. In previous studies, aspirin has been shown to reduce the incidence of CRC. Immune checkpoint blockade of T cell Ig and ITIM domain receptor (TIGIT) alone or combined with other immune checkpoint blockades moleculars has gained impressive results in the treatment of the melanoma and glioblastoma. Here, we found that TIGIT and Poliovirus receptor (PVR, CD155) are expressed in tumour cells; the TIGIT and CD155 protein expression in cancer tissue has been found to be significantly higher than that in the precancerous tissue. T cell Ig and ITIM domain receptor and CD226 were expressed in the lymphocytes near the tumour tissue and the adjacent tissues. Aspirin has been found to inhibit cancer cell viability and promote CRC cell apoptosis.Similarly, aspirin has also been found to increase pro‐apoptotic protein Bax's expression. We found that the expression of TIGIT decreased with an increase in the concentration of aspirin and that the suppression of TIGIT can affect the effect of aspirin on cell proliferation. In this paper, we found that aspirin attenuates cancer cell proliferation and induces CRC cells apoptosis by down‐regulating the expression of TIGIT, which provides new evidence for the application of aspirin in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.