Diarrhea is one of the leading causes of morbidity and mortality in humans in developed and developing countries. Furthermore, increased resistance to antibiotics has resulted in serious challenges in the treatment of this infectious disease worldwide. Therefore, there exists a need to develop alternative natural or combination drug therapies. The aim of the present study was to investigate the synergistic effect of curcumin-1 in combination with three antibiotics against five diarrhea causing bacteria. The antibacterial activity of curcumin-1 and antibiotics was assessed by the broth microdilution method, checkerboard dilution test, and time-kill assay. Antimicrobial activity of curcumin-1 was observed against all tested strains. The MICs of curcumin-1 against test bacteria ranged from 125 to 1000 μg/mL. In the checkerboard test, curcumin-1 markedly reduced the MICs of the antibiotics cefaclor, cefodizime, and cefotaxime. Significant synergistic effect was recorded by curcumin-1 in combination with cefotaxime. The toxicity of curcumin-1 with and without antibiotics was tested against foreskin (FS) normal fibroblast and no significant cytotoxicity was observed. From our result it is evident that curcumin-1 enhances the antibiotic potentials against diarrhea causing bacteria in in vitro condition. This study suggested that curcumin-1 in combination with antibiotics could lead to the development of new combination of antibiotics against diarrhea causing bacteria.
The increase in drug resistance to current antifungal drugs brings enormous challenges to the management of Candida infection. Therefore, there is a continuous need for the discovery of new antimicrobial agents that are effective against Candida infections especially from natural source especially from medical plants. The present investigation describes the synergistic anticandidal activity of two asarones (∞ and β) purified from Acorus calamus in combination with three clinically used antifungal drugs (fluconazole, clotrimazole, and amphotericin B). The synergistic anticandidal activities of asarones and drugs were assessed using the checkerboard microdilution and time-kill assays. The results of the present study showed that the combined effects of asarones and drugs principally recorded substantial synergistic activity (fractional inhibitory concentration index (FICI) <0.5). Time-kill study by combination of the minimal inhibitory concentration (MIC) of asarones and drugs (1:1) recorded that the growth of the Candida species was significantly arrested between 0 and 2 h and almost completely attenuated between 2 and 6 h of treatment. These findings have potential implications in adjourning the development of resistance as the anticandidal activity is achieved with lower concentrations of asarones and drugs. The combination of asarones and drugs also significantly inhibit the biofilm formation by Candida species, and this would also help to fight against drug resistance because biofilms formed by Candida species are ubiquitous in nature and are characterized by their recalcitrance toward antimicrobial treatment. The in vitro synergistic activity of asarones and drugs against pathogenic Candida species is reported here for the first time.
Streptomyces strains isolated from Nelliyampathy forest soil of Western Ghats, Kerala, India were evaluated for their antibacterial efficacy against two indicator pathogenic bacteria (Escherichia coli and Staphylococcus aureus). Among 140 strains tested, sixteen recorded potent antibacterial properties and were further screened against eleven bacterial pathogens. A strain identified as Streptomyces nogalater and designated as NIIST A30 exhibited maximum inhibition against all the test pathogens. Among the eight fermentation media tested, inorganic salts starch broth recorded the best for antibacterial production. The ethyl acetate crude extract exhibited antioxidant properties with IC50 value of 30 μg/mL and had no cytotoxicity towards L6, H9c2 and RAW 264.7 cell lines up to a concentration of 50 μg/mL. Maximum metabolite production was achieved in pH 7.0 at 35°C after 7 days incubation. The significant media components for maximum metabolite production were optimized through response surface methodology employing Plackett-Burman and Box-Behnken designs. The composition of the final optimized medium was soluble starch, 14.97g; (NH4)2SO4, 2.89g; K2HPO4, 2.07g; MgSO4.7H2O, 1g; NaCl, 1g, CaCO3, 2g; FeSO4.7H2O, 1mg; MnCl2.7H2O, 1mg; and ZnSO4.7H2O, 1mg per litre of distilled water. The optimization resulted an antibacterial activity of 28±1.5mm against S. epidermidis which was in close accordance with the predicted value of 30 mm. It is also evident from the result that an increase of 86.66% antibacterial production was recorded in optimized media. The chosen method was economical, efficient and useful for future antibacterial drug discovery from a broad spectrum metabolite producer like Streptomyces nogalater NIIST A30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.