A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
Global quantitative analysis of genetic interactions is a powerful approach for deciphering the roles of genes and mapping functional relationships among pathways. Using colony size as a proxy for fitness, we developed a method for measuring fitness-based genetic interactions from high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) analysis. We identified several experimental sources of systematic variation and developed normalization strategies to obtain accurate single- and double-mutant fitness measurements, which rival the accuracy of other high-resolution studies. We applied the SGA score to examine the relationship between physical and genetic interaction networks, and we found that positive genetic interactions connect across functionally distinct protein complexes revealing a network of genetic suppression among loss-of-function alleles.
Proteomics has proved invaluable in generating large-scale quantitative data; however, the development of systems approaches for examining the proteome in vivo has lagged behind. To evaluate protein abundance and localization on a proteome scale, we exploited the yeast GFP-fusion collection in a pipeline combining automated genetics, high-throughput microscopy, and computational feature analysis. We developed an ensemble of binary classifiers to generate localization data from single-cell measurements and constructed maps of ∼3,000 proteins connected to 16 localization classes. To survey proteome dynamics in response to different chemical and genetic stimuli, we measure proteome-wide abundance and localization and identified changes over time. We analyzed >20 million cells to identify dynamic proteins that redistribute among multiple localizations in hydroxyurea, rapamycin, and in an rpd3Δ background. Because our localization and abundance data are quantitative, they provide the opportunity for many types of comparative studies, single cell analyses, modeling, and prediction. VIDEO ABSTRACT.
Genomic analyses are yielding a host of new information on the multiple genetic abnormalities associated with specific types of cancer. A comprehensive description of cancer-associated genetic abnormalities can improve our ability to classify tumors into clinically relevant subgroups, and, on occasion, identify mutant genes that drive the cancer phenotype (“drivers”). More often, though, the functional significance of cancer-associated mutations is difficult to discern. Genome-wide pooled shRNA screens enable global identification of the genes essential for cancer cell survival and proliferation, providing a “functional genomic” map of human cancer to complement genomic studies. Using a lentiviral shRNA library targeting ~16,000 genes and a newly developed, dynamic scoring approach, we identified essential gene profiles in 72 breast, pancreatic, and ovarian cancer cell lines. Integrating our results with current and future genomic data should facilitate the systematic identification of drivers, unanticipated synthetic lethal relationships, and functional vulnerabilities of these tumor types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.