Abstract.-Although Phanerozoic increases in the global richness, local richness, and evenness of marine invertebrates are well documented, a common explanation for these patterns has been difficult to identify. Evidence is presented here from marine invertebrate communities that there is a Phanerozoic increase in the fundamental biodiversity number (θ), which describes diversity and relative abundance distributions in neutral ecological theory. If marine ecosystems behave according to the rules of Hubbell's Neutral Theory of Biodiversity and Biogeography, the Phanerozoic increase in θ suggests three possible mechanisms for the parallel increases in global richness, local richness, and evenness: (1) an increase in the per-individual probability of speciation, (2) an increase in the area occupied by marine metacommunities, and (3) an increase in the density (per-area abundance) of marine organisms. Because speciation rates have declined over time and because there is no clear evidence for an increase in metacommunity area through the Phanerozoic, the most likely of these is an increase in the spatial density of marine invertebrates over the Phanerozoic, an interpretation supported by previous studies of fossil abundance. This, coupled with a Phanerozoic rise in body size, suggests that an increase in primary productivity through time is the primary cause of Phanerozoic increases in θ, global richness, local richness, local evenness, abundance, and body size.
As practitioners of a historical science, paleontologists and geoscientists are well versed in the idea that the ability to understand and to anticipate the future relies upon our collective knowledge of the past. Despite this understanding, the fundamental role that the history of paleontology and the geosciences plays in shaping the structure and culture of our disciplines is seldom recognized and therefore not acted upon sufficiently. Here, we present a brief review of the history of paleontology and geology in Western countries, with a particular focus on North America since the 1800s. Western paleontology and geology are intertwined with systematic practices of exclusion, oppression, and erasure that arose from their direct participation in the extraction of geological and biological resources at the expense of Black, Indigenous, and People of Color (BIPOC). Our collective failure to acknowledge this history hinders our ability to address these issues meaningfully and systemically in present-day educational, academic, and professional settings. By discussing these issues and suggesting some ways forward, we intend to promote a deeper reflection upon our collective history and a broader conversation surrounding racism, colonialism, and exclusion within our scientific communities. Ultimately, it is necessary to listen to members of the communities most impacted by these issues to create actionable steps forward while holding ourselves accountable for the past.
Mass extinctions affect the history of life by decimating existing diversity and ecological structure and creating new evolutionary and ecological pathways. Both the loss of diversity during these events and the rebound in diversity following extinction had a profound effect on Phanerozoic evolutionary trends. Phylogenetic trees can be used to robustly assess the evolutionary implications of extinction and origination.We examine both extinction and origination during the Late Ordovician mass extinction. This mass extinction was the second largest in terms of taxonomic loss but did not appear to radically alter Paleozoic marine assemblages. We focus on the brachiopod order Strophomenida, whose evolutionary relationships have been recently revised, to explore the disconnect between the processes that drive taxonomic loss and those that restructure ecological communities.A possible explanation for this disconnect is if extinction and origination were random with respect to morphology. We define morphospace using principal coordinates analysis (PCO) of character data from 61 Ordovician–Devonian taxa and their 45 ancestral nodes, defined by a most parsimonious reconstruction in Mesquite. A bootstrap of the centroid of PCO values indicates that genera were randomly removed from morphospace by the Late Ordovician mass extinction, and new Silurian genera were clustered within a smaller previously unoccupied region of morphospace. Diversification remained morphologically constrained throughout the Silurian and into the Devonian. This suggests that the recovery from the Late Ordovician mass extinction resulted in a long-term shift in strophomenide evolution. More broadly, recovery intervals may hold clues to understanding the evolutionary impact of mass extinctions.
D. Jablonski [Proc. Natl. Acad. Sci. U.S.A. 99, 8139–8144 (2002)] coined the term “dead clades walking” (DCWs) to describe marine fossil orders that experience significant drops in genus richness during mass extinction events and never rediversify to previous levels. This phenomenon is generally interpreted as further evidence that the macroevolutionary consequences of mass extinctions can continue well past the formal boundary. It is unclear, however, exactly how long DCWs are expected to persist after extinction events and to what degree they impact broader trends in Phanerozoic biodiversity. Here we analyze the fossil occurrences of 134 skeletonized marine invertebrate orders in the Paleobiology Database (paleobiodb.org) using a Bayesian method to identify significant change points in genus richness. Our analysis identifies 70 orders that experience major diversity losses without recovery. Most of these taxa, however, do not fit the popular conception of DCWs as clades that narrowly survive a mass extinction event and linger for only a few stages before succumbing to extinction. The median postdrop duration of these DCW orders is long (>30 Myr), suggesting that previous studies may have underestimated the long-term taxonomic impact of mass extinction events. More importantly, many drops in diversity without recovery are not associated with mass extinction events and occur during background extinction stages. The prevalence of DCW orders throughout both mass and background extinction intervals and across phyla (>50% of all marine invertebrate orders) suggests that the DCW pattern is a major component of macroevolutionary turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.