Viewing emotionally negative pictures has been proposed to attenuate brain responses towards sudden auditory events, as more attentional resources are allocated to the affective visual stimuli. However, peripheral reflexes have been shown intensified. These observations have raised the question of whether an emotional context actually facilitates or attenuates processing in the auditory novelty system. Using scalp event-related potentials we measured brain responses induced by novel sounds when participants responded to visual stimuli displaying either threatening or neutral sceneries. We then tested the modulatory effect of the emotional task conditions on auditory responses. Novel sounds yielded a stronger behavioural disruption on subjects' visual task performance when responding to negative pictures compared with when responding to the neutral ones. Accordingly, very early novelty-P3 responses to novel sounds were enhanced in negative context. These results provide strong evidence that the emotional context enhances the activation of neural networks in the auditory novelty system, gating acoustic novelty processing under potentially threatening conditions.
Visualizing emotionally loaded pictures intensifies peripheral reflexes toward sudden auditory stimuli, suggesting that the emotional context may potentiate responses elicited by novel events in the acoustic environment. However, psychophysiological results have reported that attentional resources available to sounds become depleted, as attention allocation to emotional pictures increases. These findings have raised the challenging question of whether an emotional context actually enhances or attenuates auditory novelty processing at a central level in the brain. To solve this issue, we used functional magnetic resonance imaging to first identify brain activations induced by novel sounds (NOV) when participants made a color decision on visual stimuli containing both negative (NEG) and neutral (NEU) facial expressions. We then measured modulation of these auditory responses by the emotional load of the task. Contrary to what was assumed, activation induced by NOV in superior temporal gyrus (STG) was enhanced when subjects responded to faces with a NEG emotional expression compared with NEU ones. Accordingly, NOV yielded stronger behavioral disruption on subjects' performance in the NEG context. These results demonstrate that the emotional context modulates the excitability of auditory and possibly multimodal novelty cerebral regions, enhancing acoustic novelty processing in a potentially harming environment.
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach.
it has been proposed that the human amygdala may not only encode the emotional value of sensory events, but more generally mediate the appraisal of their relevance for the individual's goals, including relevance for action or task-based needs. However, emotional and non-emotional/action-relevance might drive amygdala activity through distinct neural signals, and the relative timing of both kinds of responses remains undetermined. Here, we recorded intracranial event-related potentials from nine amygdalae of patients undergoing epilepsy surgery, while they performed variants of a Go/NoGo task with faces and abstract shapes, where emotion-and action-relevance were orthogonally manipulated. Our results revealed early amygdala responses to emotion facial expressions starting ~ 130 ms after stimulus-onset. Importantly, the amygdala responded to action-relevance not only with face stimuli but also with abstract shapes (squares), and these relevance effects consistently occurred in later time-windows (starting ~ 220 ms) for both faces and squares. A similar dissociation was observed in gamma activity. Furthermore, whereas emotional responses habituated over time, the actionrelevance effect increased during the course of the experiment, suggesting progressive learning based on the task needs. Our results support the hypothesis that the human amygdala mediates a broader relevance appraisal function, with the processing of emotion-relevance preceding temporally that of action-relevance. The amygdala is a crucial component of brain circuits allowing swift reaction to threatening stimuli, an ability critical for adaptive behavior and survival 1,2. Fast and efficient discrimination of potentially harmful events is a hallmark of the fear response, associated with a well-established sensitivity of the amygdala to threat information, and extensive connectivity with multiple other brain regions that act to facilitate attention, enhance memory, and promote actions 3. It has recently been questioned, however, whether the amygdala is dedicated to fear processing 1 or whether instead it may serve a broader function for the appraisal of behaviorally relevant events (see 4 for a review). There is abundant evidence that the human amygdala responds to other emotionally significant stimuli beyond threat 5 , including positive or reward information 6,7 , but also novelty 8 and non-emotional salient stimuli with personal impact or goal-related significance 9,10. This diversity of response patterns has led to recent theoretical accounts proposing that the amygdala may actually encode the "relevance" of events, which is determined by the goals,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.