Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 × 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.
The efficacy of a sporozoite-based malaria vaccine is tested in humans, nonhuman primates, and mice.
In 2015 there were an estimated 214 million clinical cases and 438,000 deaths due to malaria 1 , primarily caused by Pf in children in sub-Saharan Africa. A highly effective vaccine is urgently needed to prevent malaria in individuals and to facilitate elimination of malaria from defined geographic areas. To achieve these goals, we established an interim target of >85% sterile protection against Pf infection for >6 months 2 .There is currently no malaria subunit vaccine that approaches this level of protection. The most extensively studied candidate malaria vaccine, RTS,S (a subunit vaccine based on the Pf circumsporozoite protein (PfCSP)), confers sterilizing protection against controlled human malaria infection (CHMI) in about 22% of healthy malarianaive adults 5 months after vaccination 3 . In a phase 3 field study, the efficacy of RTS,S against clinical malaria was 26% and 36% in young infants and children between the ages of 5 and 17 months, respectively, through 38-48 months of follow-up following a fourdose regimen on a 0-, 1-, 2-, and 20-month schedule 4 . Therefore, it is necessary to investigate alternative vaccination strategies that confer long-lived sterilizing protection 5,6 .Sustained sterilizing immunity against the pre-erythrocytic stages of Pf has been observed in humans immunized by wholeparasite approaches using mosquitoes for vaccination 7,8 . In a study An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10 5 PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks.To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-g-producing CD8 T cells were present at ~100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.
Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.