This tutorial review gives a brief introduction to impedance spectroscopy and discusses how it has been used to provide insight into charge transport through conducting polymers, particularly when the polymers are used as electrodes for solution studies or the design of electrodes for biomedical applications. As such it provides both an introduction to the topic and references to both classic and contemporary work for the more advanced reader.
The impedance behavior of semiconducting polymer film electrodes based on poly(3,4-ethylenedioxythiophene) (PEDOT) in combination with a series of anionic dopants has been investigated using electrochemical impedance spectroscopy (EIS) over the frequency range from 0.1 Hz to 100 kHz. Films were electrodeposited on gold-coated Pt wire electrodes from a nonaqueous solution containing 3,4-ethylenedioxythiophene (EDOT). EIS results reveal that, under the optimal synthesis conditions, PEDOT electrodes consistently exhibit low, frequency-independent impedance over a wide frequency range (from ∼10 Hz to 100 kHz). These results suggest that the behavior originates from the two-layer homogeneous morphology of the film. A model for conduction in the films that is supported by experimental evidence is proposed, and EIS data for electrodes produced under a variety of electropolymerization conditions are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.