Intracellular Ca2+ release and reuptake are essential for contraction and relaxation of normal heart muscle. Intracellular Ca2+ transients were recorded with aequorin during isometric contraction of myocardium from patients with end-stage heart failure. In contrast to controls, contractions and Ca2+ transients of muscles from failing hearts were markedly prolonged, and the Ca2+ transients exhibited 2 distinct components. Muscles from failing hearts showed a diminished capacity to restore low resting Ca2+ levels during diastole. These experiments provide the first direct evidence from actively contracting human myocardium that intracellular Ca2+ handling is abnormal and may cause systolic and diastolic dysfunction in heart failure.
The function of the heart is to contract and pump oxygenated blood to the body and deoxygenated blood to the lungs. To achieve this goal, a normal human heart must beat regularly and continuously for one's entire life. Heartbeats originate from the rhythmic pacing discharge from the sinoatrial (SA) node within the heart itself. In the absence of extrinsic neural or hormonal influences, the SA node pacing rate would be about 100 beats per minute. Heart rate and cardiac output, however, must vary in response to the needs of the body's cells for oxygen and nutrients under varying conditions. In order to respond rapidly to the changing requirements of the body's tissues, the heart rate and contractility are regulated by the nervous system, hormones, and other factors. Here we review how the cardiovascular system is controlled and influenced by not only a unique intrinsic system, but is also heavily influenced by the autonomic nervous system as well as the endocrine system.
In human and experimental models of heart failure, sarcoplasmic reticulum Ca 2؉ ATPase (SERCA2a) activity is decreased, resulting in abnormal calcium handling. The disturbances in calcium metabolism have been shown to contribute significantly to the contractile dysfunction observed in heart failure. We investigated whether increasing SERCA2a expression can improve ventricular function in an animal model of heart failure obtained by creating ascending aortic constriction in rats. After 19 -23 wk of banding during the transition from compensated hypertrophy to heart failure (documented by >25% decrease in fractional shortening), rats were randomized to receive either an adenovirus carrying the SERCA2a gene (Ad.SERCA2a, n ؍ 13) or -galactosidase (Ad.gal, n ؍ 14) by using a catheter-based technique. The failing hearts infected with Ad.gal were characterized by a significant decrease in SERCA2a expression and a decrease in SERCA2a activity compared with nonfailing sham-operated rats (n ؍ 11). In addition, these failing hearts had reduced left-ventricular systolic pressure, maximal rate of left-ventricular pressure rise and decline (؉dP͞dt, ؊dP͞dt), and rate of isovolumic relaxation (). Overexpression of SERCA2a restored both SERCA2a expression and ATPase activity to nonfailing levels. Furthermore, rats infected with Ad.SERCA2a had significant improvement in left-ventricular systolic pressure, ؉dP͞dt, ؊dP͞dt, and rate of isovolumic relaxation () normalizing them back to levels comparable to sham-operated rats. In this study, we show that in an animal model of heart failure where SERCA2a protein levels and activity are decreased and severe contractile dysfunction is present, overexpression of SERCA2a in vivo restores both systolic and diastolic function to normal levels. B oth contraction and relaxation abnormalities at the cardiac myocyte level have been identified in human and animal models of heart failure (1, 2). Trabeculae and isolated cardiac cells from failing hearts have characteristic functional abnormalities, which include an increase in diastolic Ca 2ϩ , an increase in the time course of Ca 2ϩ transient, and a decrease in sarcoplasmic reticulum (SR) Ca 2ϩ release (1-3). These abnormalities are especially accentuated at high frequencies of stimulation leading to the characteristic negative force-frequency relationship in failing myocardium (4).Because the SR plays a central role in controlling Ca 2ϩ movements in myocardial cells during excitation-contraction coupling, a large number of studies have been performed examining the expression and function of the SR Ca 2ϩ ATPase (SERCA2a)(5-9). SERCA2a activity and SR Ca 2ϩ uptake are reduced in failing hearts (9). This reduction in activity is generally, but not invariably, associated with reductions in SERCA2a mRNA and protein. Taken together, these results support the hypothesis that abnormal Ca 2ϩ handling in failing hearts is caused in part by a decrease in SERCA2a activity.To examine the importance of SERCA2a in the development of decompensated heart...
Background-Ischemia-induced cardiomyopathy usually is accompanied by elevated left ventricular end-diastolic pressure, which follows from increased myocardial stiffness resulting from upregulated collagen expression. In addition to collagen, a main determinant of stiffness is titin, whose role in ischemia-induced left ventricular stiffening was studied here. Human heart sarcomeres coexpress 2 principal titin isoforms, a more compliant N2BA isoform and a stiffer N2B isoform. In comparison, normal rat hearts express almost no N2BA titin. Methods and Results-Gel electrophoresis and immunoblotting were used to determine the N2BA-to-N2B titin isoform ratio in nonischemic human hearts and nonnecrotic left ventricle of coronary artery disease (CAD) patients. The average N2BA-to-N2B ratio was 47:53 in severely diseased CAD transplanted hearts and 32:68 in nonischemic transplants. In normal donor hearts and donor hearts with CAD background, relative N2BA titin content was Ϸ30%. The titin isoform shift in CAD transplant hearts coincided with a high degree of modifications of cardiac troponin I, probably indicating increased preload. Immunofluorescence microscopy on CAD transplant specimens showed a regular cross-striated arrangement of titin and increased expression of collagen and desmin. Force measurements on isolated myofibrils revealed reduced passive-tension levels in sarcomeres of CAD hearts with high left ventricular end-diastolic pressure compared with sarcomeres of normal hearts. In a rat model of ischemia-induced myocardial infarction (left anterior descending coronary artery ligature), 43% of animals, but only 14% of sham-operated animals, showed a distinct N2BA titin band on gels. Conclusions-A titin isoform switch was observed in chronically ischemic human hearts showing extensive remodeling, which necessitated cardiac transplantation. The shift, also confirmed in rat hearts, caused reduced titin-derived myofibrillar stiffness. Titin modifications in long-term ischemic myocardium could impair the ability of the heart to use the Frank-Starling mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.