Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats. evolutionary genomics ͉ fermentation L actic acid bacteria (LAB) are historically defined as a group of microaerophilic, Gram-positive organisms that ferment hexose sugars to produce primarily lactic acid. This functional classification includes a variety of industrially important genera, including Lactococcus, Enterococcus, Oenococcus, Pediococcus, Streptococcus, Leuconostoc, and Lactobacillus species. The seemingly simplistic metabolism of LAB has been exploited throughout history for the preservation of foods and beverages in nearly all societies dating back to the origins of agriculture (1). Domestication of LAB strains passed down through various culinary traditions and continuous passage on food stuffs has resulted in modern-day cultures able to carry out these fermentations. Today, LAB play a prominent role in the world food supply, performing the main bioconversions in fermented dairy products, meats, and vegetables. LAB also are critical for the production of wine, coffee, silage, cocoa, sourdough, and numerous indigenous food fermentations (2).LAB species are indigenous to food-related habitats, including plant (fruits, vegetables, and cereal grains) and milk environments. In addition, LAB are naturally associated with the mucosal surfaces of animals, e.g., small intestine, colon, and vagina. Isolates of the same species often are obtained from plant, dairy, and animal habitats, implying wide distribution and specialized adaptation to these diverse environments. LAB species employ two pathways to metabolize hexose: a homofermentative pathway in which lactic acid is the primary product and a heterofermentative pathway in which lactic acid, CO 2 , acetic acid, and͞or ethanol are produced (3).Complete genome sequences have been published for eight fermentative and commensal LAB species: Lactococcus lactis, Lactobacillus plantarum, Lactobacillus johnsonii, Lactobacillus acidophilus, Lactobacillus sakei, Lactobacillus bulgaricus, Lactobacillus salivarius, and Streptococcus thermophilus (4-11). This study examines nine other LAB genomes representing the phylogenetic and functional diversity of lactic acid-producing microorganisms. The LAB have small genomes encoding a range of biosynthe...
Microarray expression analysis has become one of the most widely used functional genomics tools. Efficient application of this technique requires the development of robust and reproducible protocols. We have optimized all aspects of the process, including PCR amplification of target cDNA clones, microarray printing, probe labeling and hybridization, and have developed strategies for data normalization and analysis.
Lactobacillus helveticus CNRZ32 is used by the dairy industry to modulate cheese flavor. The compilation of a draft genome sequence for this strain allowed us to identify and completely sequence 168 genes potentially important for the growth of this organism in milk or for cheese flavor development. The primary aim of this study was to investigate the expression of these genes during growth in milk and MRS medium by using microarrays. Oligonucleotide probes against each of the completely sequenced genes were compiled on maskless photolithography-based DNA microarrays. Additionally, the entire draft genome sequence was used to produce tiled microarrays in which noninterrupted sequence contigs were covered by consecutive 24-mer probes and associated mismatch probe sets. Total RNA isolated from cells grown in skim milk or in MRS to mid-log phase was used as a template to synthesize cDNA, followed by Cy3 labeling and hybridization. An analysis of data from annotated gene probes identified 42 genes that were upregulated during the growth of CNRZ32 in milk (P < 0.05), and 25 of these genes showed upregulation after applying Bonferroni's adjustment. The tiled microarrays identified numerous additional genes that were upregulated in milk versus MRS. Collectively, array data showed the growth of CNRZ32 in milk-induced genes encoding cell-envelope proteinases, oligopeptide transporters, and endopeptidases as well as enzymes for lactose and cysteine pathways, de novo synthesis, and/or salvage pathways for purines and pyrimidines and other functions. Genes for a hypothetical phosphoserine utilization pathway were also differentially expressed. Preliminary experiments indicate that cheesederived, phosphoserine-containing peptides increase growth rates of CNRZ32 in a chemically defined medium. These results suggest that phosphoserine is used as an energy source during the growth of L. helveticus CNRZ32.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.