Background-Inherited long-QT syndrome is characterized by prolonged QT interval on the ECG, syncope, and sudden death caused by ventricular arrhythmia. Causative mutations occur mostly in cardiac potassium and sodium channel subunit genes. Confidence in mutation pathogenicity is usually reached through family genotype-phenotype tracking, control population studies, molecular modeling, and phylogenetic alignments; however, biophysical testing offers a higher degree of validating evidence. Methods and Results-By using in vitro electrophysiological testing of transfected mutant and wild-type long-QT syndrome constructs into Chinese hamster ovary cells, we investigated the biophysical properties of 9 KCNQ1 missense mutations (A46T, T265I, F269S, A302V, G316E, F339S, R360G, H455Y, and S546L) identified in a New Zealand-based long-QT syndrome screening program. We demonstrate through electrophysiology and molecular modeling that 7 of the missense mutations have profound pathological dominant-negative loss-of-function properties, confirming their likely disease-causing nature. This supports the use of these mutations in diagnostic family screening. Two mutations (A46T, T265I) show suggestive evidence of pathogenicity within the experimental limits of biophysical testing, indicating that these variants are disease-causing via delayed-or fast-activation kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.