This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
The hydrogen-atom transfer in soybean lipoxygenase-1 (SLO) exhibits a large kinetic isotope effect on k(cat) (KIE = 81) near room temperature and a very weak temperature dependence (E(act) = 2.1 kcal/mol). These properties are consistent with H small middle dot transfer that occurs entirely by a tunneling event. Mutants of SLO were prepared, and the temperature dependence of the KIE was measured, to test for alterations in the tunneling behavior. All mutants studied exhibit KIEs of similar, large magnitude at 30 degrees C, despite an up to 3 orders of magnitude change in k(cat). E(act) for two of the mutants (Leu(754) --> Ala, Leu(546) --> Ala) is larger than for wild-type (WT), and the KIE becomes slightly more temperature dependent. In contrast, Ile(553) --> Ala exhibits k(cat) and E(act) parameters similar to wild-type soybean lipoxygenase-1 (WT-SLO) for protiated substrate; however, the KIE is markedly temperature dependent. The behavior of the former two mutants could reflect increased reorganization energies (lambda), but the behavior of the latter mutant is inconsistent with this description. We have invoked a full H* tunneling model (Kuznetsov, A. M.; Ulstrup, J. Can. J. Chem. 1999, 77, 1085-1096) to explain the temperature dependence of the KIE, which is indicative of the extent to which distance sampling (gating) modulates hydrogen transfer. WT-SLO exhibits a very small E(act) and a nearly temperature-independent KIE, which was modeled as arising from a compressed hydrogen transfer distance with little modulation of the hydrogen transfer distance. The observations on the Leu(754) --> Ala and Leu(546) --> Ala mutants were modeled as arising from a slightly less compressed active site with greater modulation of the hydrogen transfer distance by environmental dynamics. Finally, the observed behavior of the Ile(553) --> Ala mutant indicates a relaxed active site with extensive involvement of gating to facilitate hydrogen transfer. We conclude that WT-SLO has an active site structure that is well organized to support hydrogen tunneling and that mutations perturb structural elements that support hydrogen tunneling. Modest alterations in active site residues increase lambda and/or increase the hydrogen transfer distance, thereby affecting the probability that tunneling can occur. These studies allow the detection and characterization of a protein-gating mode in catalysis.
Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65 degrees C; this is analogous to previous findings with mesophilic ADH at 25 degrees C. Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.