Using virtual stock markets with artificial interacting software investors, aka agent-based models, we present a method to reverse engineer real-world financial time series. We model financial markets as made of a large number of interacting boundedly rational agents. By optimizing the similarity between the actual data and that generated by the reconstructed virtual stock market, we obtain parameters and strategies, which reveal some of the inner workings of the target stock market. We validate our approach by out-of-sample predictions of directional moves of the Nasdaq Composite Index.
Using virtual stock markets with artificial interacting software investors, aka agent-based models, we present a method to reverse engineer real-world financial time series. We model financial markets as made of a large number of interacting boundedly rational agents. By optimizing the similarity between the actual data and that generated by the reconstructed virtual stock market, we obtain parameters and strategies, which reveal some of the inner workings of the target stock market. We validate our approach by out-of-sample predictions of directional moves of the Nasdaq Composite Index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.