The prevalence of drug-resistant bacteria drives the quest for new antimicrobials, including those that are not expected to readily engender resistance. One option is to mimic Nature's most ubiquitous means of controlling bacterial growth, antimicrobial peptides, which have evolved over eons. In general, bacteria remain susceptible to these peptides. Human antimicrobial peptides play a central role in innate immunity, and deficiencies in these peptides have been tied to increased rates of infection. However, clinical use of antimicrobial peptides is hampered by issues of cost and stability. The development of nonpeptide mimics of antimicrobial peptides may provide the best of both worlds: a means of using the same mechanism chosen by Nature to control bacterial growth without the problems associated with peptide therapeutics. The ceragenins were developed to mimic the cationic, facially amphiphilic structures of most antimicrobial peptides. These compounds reproduce the required morphology using a bile-acid scaffolding and appended amine groups. The resulting compounds are actively bactericidal against both gram-positive and gram-negative organisms, including drug-resistant bacteria. This antimicrobial activity originates from selective association of the ceragenins with negatively charged bacterial membrane components. Association has been studied with synthetic models of bacterial membrane components, with bacterial lipopolysaccharide, with vesicles derived from bacterial phospholipids, and with whole cells. Comparisons of the antimicrobial activities of ceragenins and representative antimicrobial peptides suggest that these classes of compounds share a mechanism of action. Rapid membrane depolarization is caused by both classes as well as blebbing of bacterial membranes. Bacteria express the same genes in response to both classes of compounds. On the basis of the antibacterial activities of ceragenins and preliminary in vivo studies, we expect these compounds to find use in augmenting or replacing antimicrobial peptides in treating human disease.
The rise in the rates of glycopeptide resistance among Staphylococcus aureus isolates is concerning and underscores the need for the development of novel potent compounds. Ceragenins CSA-8 and CSA-13, cationic steroid molecules that mimic endogenous antimicrobial peptides, have previously been demonstrated to possess broad-spectrum activities against multidrug-resistant bacteria. We examined the activities of CSA-8 and CSA-13 against clinical isolates of vancomycin-intermediate S. aureus (VISA), heterogeneous vancomycinintermediate S. aureus (hVISA), as well as vancomycin-resistant S. aureus (VRSA) and compared them to those of daptomycin, linezolid, and vancomycin by susceptibility testing and killing curve analysis. We also examined CSA-13 for its concentration-dependent activity, inoculum effect, postantibiotic effect (PAE), and synergy in combination with various antimicrobials. Overall, the MICs and minimal bactericidal concentrations of CSA-13 were fourfold lower than those of CSA-8. Time-kill curve analysis of the VRSA, VISA, and hVISA clinical isolates demonstrated concentration-dependent bactericidal killing. An inoculum effect was also observed when a higher starting bacterial density was used, with the time required to achieve 99.9% killing reaching 1 h with a 6-log 10 -CFU/ml starting inoculum, whereas it was >24 h with a 8-to 9-log 10 -CFU/ml starting inoculum with 10؋ the MIC (P < 0.001). A concentration-dependent PAE was demonstrated with CSA-13, nearly doubling from 2؋ to 4؋ the MIC (P ؍ 0.03). With respect to the CSA-13 antimicrobial combinations, time-kill curve analysis showed no difference in the log 10 CFU/ml at 24 h for the majority of the organisms tested. However, early synergy at 4 to 8 h was detected against the VRSA Pennsylvania strain (2002) when CSA-13 was tested in combination with gentamicin, while early additivity was demonstrated against all of the other organisms.
CSA-13 showed concentration-dependent activity against clinical isolates of P. aeruginosa, including multidrug-resistant P. aeruginosa. The addition of cefepime or ciprofloxacin to CSA-13 enhanced bacterial kill, achieving early synergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.