Chromosomal rearrangements of the human MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemias. These patients need to be identified, treated appropriately and minimal residual disease was monitored by quantitative PCR techniques. Genomic DNA was isolated from individual acute leukemia patients to identify and characterize chromosomal rearrangements involving the human MLL gene. A total of 760 MLL-rearranged biopsy samples obtained from 384 pediatric and 376 adult leukemia patients were characterized at the molecular level. The distribution of MLL breakpoints for clinical subtypes (acute lymphoblastic leukemia, acute myeloid leukemia, pediatric and adult) and fused translocation partner genes (TPGs) will be presented, including novel MLL fusion genes. Combined data of our study and recently published data revealed 104 different MLL rearrangements of which 64 TPGs are now characterized on the molecular level. Nine TPGs seem to be predominantly involved in genetic recombinations of MLL: AFF1/AF4, MLLT3/ AF9, MLLT1/ENL, MLLT10/AF10, MLLT4/AF6, ELL, EPS15/AF1P, MLLT6/AF17 and SEPT6, respectively. Moreover, we describe for the first time the genetic network of reciprocal MLL gene fusions deriving from complex rearrangements.
The translocation t(12;22) involves MN1 and TEL and is rarely found in acute myeloid leukemia (AML). Recently, it has been shown in a mouse model that the fusion protein MN1-TEL can promote growth of primitive hematopoietic progenitor cells (HPCs) and, in cooperation with HOXA9, induce AML. We quantified MN1 expression by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in 142 adult patients with AML with normal cytogenetics treated uniformly in trial AML-SHG 01/99. AML samples were dichotomized at the median MN1 expression. High MN1 expression was significantly correlated with unmutated NPM1 (P < .001), poor response to the first course of induction treatment (P ؍ .02), a higher relapse rate (P ؍ .03), and shorter relapse-free (P ؍ .002) and overall survivals (P ؍ .03). In multivariate analysis, MN1 expression was an independent prognostic marker (P ؍ .02) in addition to age and Eastern Cooperative Oncology Group (ECOG) performance status. Excluding patients with NPM1 mutated /FLT3ITD negative , high MN1 expression was associated with shorter relapse-free survival (P ؍ .057). MN1
The translocation t(8;21) yields the leukemic fusion gene AML1/MTG8 and is associated with 10%-15% of all de novo cases of acute myeloid leukemia. We demonstrate the efficient and specific suppression of AML1/MTG8 by small interfering RNAs (siRNAs) in the human leukemic cell lines Kasumi-1 and SKNO-1. siRNAs targeted against the fusion site of the AML1/MTG8 mRNA reduce the levels of AML1/MTG8 without affecting the amount of wild-type AML1. These data argue against a transitive RNA interference mechanism potentially induced by siRNAs in such leukemic cells. Depletion of AML1/MTG8 correlates with an increased susceptibility of both Kasumi-1 and SKNO-1 cells to tumor growth factor  1 (TGF 1 )/vitamin D 3 -induced differentiation, leading to increased expression of CD11b, macrophage colony-stimulating factor (M-CSF) receptor, and C/EBP␣ (CAAT/enhancer binding protein). Moreover, siRNA-mediated AML1/MTG8 suppression results in changes in cell shape and, in combination with TGF 1 /vitamin D 3 , severely reduces clonogenicity of Kasumi-1 cells. These results suggest an important role for AML1/MTG8 in preventing differentiation, thereby propagating leukemic blast cells. Therefore, siRNAs are promising tools for a functional analysis of AML1/MTG8 and may be used in a molecularly defined therapeutic approach for
We describe genetic and clinical characteristics of acute myeloid leukemia (AML) patients according to age from an academic population-based registry. Adult patients with newly diagnosed AML at 63 centers in Germany and Austria were followed within the AMLSG BiO registry (NCT01252485). Between January 1, 2012, and December 31, 2014, data of 3525 patients with AML (45% women) were collected. The median age was 65 years (range 18–94). The comparison of age-specific AML incidence rates with epidemiological cancer registries revealed excellent coverage in patients < 70 years old and good coverage up to the age of 80. The distribution according to the European LeukemiaNet (ELN) risk categorization from 2010 was 20% favorable, 31% intermediate-1, 28% intermediate-2, and 21% adverse. With increasing age, the relative but not the absolute prevalence of patients with ELN favorable and intermediate-1 risk (p < 0.001), with activating FLT3 mutations (p < 0.001), with ECOG performance status < 2 (p < 0.001), and with HCT-CI comorbidity index < 3 (p < 0.001) decreased. Regarding treatment, obesity and favorable risk were associated with an intensive treatment, whereas adverse risk, higher age, and comorbidity index > 0 were associated with non-intensive treatment or best supportive care. The AMLSG BiO registry provides reliable population-based distributions of genetic, clinical, and treatment characteristics according to age.Electronic supplementary materialThe online version of this article (10.1007/s00277-017-3150-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.