Intensification of weather extremes is currently emerging as one of the most important facets of climate change. Research on extreme events (“event‐focused” in contrast to “trend‐focused”) has increased in recent years and, in 2004, accounted for one‐fifth of the experimental climate‐change studies published. Numerous examples, ranging from microbiology and soil science to biogeography, demonstrate how extreme weather events can accelerate shifts in species composition and distribution, thereby facilitating changes in ecosystem functioning. However, assessing the importance of extreme events for ecological processes poses a major challenge because of the very nature of such events: their effects are out of proportion to their short duration. We propose that extreme events can be characterized by statistical extremity, timing, and abruptness relative to the life cycles of the organisms affected. To test system response to changing magnitude and frequency of weather events, controlled experiments are useful tools. These experiments provide essential insights for science and for societies that must develop coping strategies for such events. Here, we discuss future research needs for climate‐change experiments in ecology. For illustration, we describe an experimental plan showing how to meet the challenge posed by changes in the frequency or magnitude of extreme events.
A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity-stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the 'fast-slow' leaf economics spectrum in driving the diversity-stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast-slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity-stability relationship demonstrates a more multicausal relationship than has been previously acknowledged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.