Future planetary surface missions to the Moon or Mars, for example, can be augmented by the use of local materials, in order to reduce launch mass and expand mission capability. Using lunar regolith simulant and heating it within a susceptor-assisted microwave oven, it was possible to manufacture a variety of basaltic glasses. Furthermore, it was possible to shape these glasses by grinding and polishing the surface flat and smooth. Glasses manufactured from different lunar regolith simulants were coated with aluminium or silver, and the reflective properties of the resulting mirrors and uncoated surfaces were measured. It was shown that with a porous and/or smooth surface finish, mirrors could be made that reflect the incident solar light (400 nm-1250 nm) in-between 30% for the worst and 85% for the best samples. The same samples with uncoated surfaces showed to reflect less than 7% of incident solar light in the same wavelength range.
In-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the destination of interest. Typical approaches towards ISRU are often constrained by the mass and energy requirements of transporting processing machineries, such as rovers and massive reactors, and the vast amount of consumables needed. Application of self-reproducing bacteria for the extraction of resources is a promising approach to reduce these pitfalls. In this work, the bacterium Shewanella oneidensis was used to reduce three different types of Lunar and Martian regolith simulants, allowing for the magnetic extraction of iron-rich materials. The combination of bacterial treatment and magnetic extraction resulted in a 5.8-times higher quantity of iron and 43.6% higher iron concentration compared to solely magnetic extraction. The materials were 3D printed into cylinders and the mechanical properties were tested, resulting in a 400% improvement in compressive strength in the bacterially treated samples. This work demonstrates a proof of concept for the on-demand production of construction and replacement parts in space exploration.
In-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the destination of interest. Typical approaches towards ISRU are often constrained by the mass and energy requirements of transporting processing machineries, such as rovers and massive reactors, and the vast amount of consumables needed. Application of self-reproducing bacteria for the extraction of resources is a promising approach to avoid these pitfalls. In this work, the bacterium Shewanella oneidensis was used to reduce three different types of Lunar and Martian regolith simulants, allowing for the magnetic extraction of iron-rich materials. The quantity of bacterially extracted material was up to 5.8 times higher and the total iron concentration was up to 43.6% higher in comparison to untreated material. The materials were 3D printed into cylinders and the mechanical properties were tested, resulting in a 396 ± 115% improvement in compressive strength in the bacterially treated samples. This work demonstrates a proof of concept for the on-demand production of construction and replacement parts in space exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.