In-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the destination of interest. Typical approaches towards ISRU are often constrained by the mass and energy requirements of transporting processing machineries, such as rovers and massive reactors, and the vast amount of consumables needed. Application of self-reproducing bacteria for the extraction of resources is a promising approach to reduce these pitfalls. In this work, the bacterium Shewanella oneidensis was used to reduce three different types of Lunar and Martian regolith simulants, allowing for the magnetic extraction of iron-rich materials. The combination of bacterial treatment and magnetic extraction resulted in a 5.8-times higher quantity of iron and 43.6% higher iron concentration compared to solely magnetic extraction. The materials were 3D printed into cylinders and the mechanical properties were tested, resulting in a 400% improvement in compressive strength in the bacterially treated samples. This work demonstrates a proof of concept for the on-demand production of construction and replacement parts in space exploration.
In-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the destination of interest. Typical approaches towards ISRU are often constrained by the mass and energy requirements of transporting processing machineries, such as rovers and massive reactors, and the vast amount of consumables needed. Application of self-reproducing bacteria for the extraction of resources is a promising approach to avoid these pitfalls. In this work, the bacterium Shewanella oneidensis was used to reduce three different types of Lunar and Martian regolith simulants, allowing for the magnetic extraction of iron-rich materials. The quantity of bacterially extracted material was up to 5.8 times higher and the total iron concentration was up to 43.6% higher in comparison to untreated material. The materials were 3D printed into cylinders and the mechanical properties were tested, resulting in a 396 ± 115% improvement in compressive strength in the bacterially treated samples. This work demonstrates a proof of concept for the on-demand production of construction and replacement parts in space exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.