Over the last two decades, pancreatic islet transplantations have become a promising treatment for Type I diabetes. However, although providing a consistent and sustained exogenous insulin supply, there are a number of limitations hindering the widespread application of this approach. These include the lack of sufficient vasculature and allogeneic immune attacks after transplantation, which both contribute to poor cell survival rates. Here, these issues are addressed using a biofabrication approach. An alginate/gelatin‐based bioink formulation is optimized for islet and islet‐related cell encapsulation and 3D printing. In addition, a custom‐designed coaxial printer is developed for 3D printing of multicellular islet‐containing constructs. In this work, the ability to fabricate 3D constructs with precise control over the distribution of multiple cell types is demonstrated. In addition, it is shown that the viability of pancreatic islets is well maintained after the 3D printing process. Taken together, these results represent the first step toward an improved vehicle for islet transplantation and a potential novel strategy to treat Type I diabetes.
Porous silicon nanoparticles (pSiNP), modified to target dendritic cells (DC), provide an alternate strategy for the delivery of immunosuppressive drugs. Here, we aimed to develop a DC-targeting pSiNP displaying c-type lectin, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and CD11c monoclonal antibodies. The in vivo tracking of these fluorescent DC-targeting nanoparticles was assessed in both C57BL/6 mice and common marmosets ( Callithrix jacchus) by intravenous injection (20 mg/kg). Rapamycin and ovalbumin (OVA) peptide loaded pSiNP were employed to evaluate their ability to generate murine CD4CD25FoxP3 regulatory T-cells in vivo within OVA sensitized mice. In vivo, pSiNP migrated to the liver, kidneys, lungs, and spleen in both mice and marmosets. Flow cytometry confirmed pSiNP uptake by splenic and peripheral blood DC when functionalized with targeting antibodies. C57BL/6 OVA sensitized mice injected with CD11c-pSiNP loaded with rapamycin + OVA produced a 5-fold higher number of splenic regulatory T-cells compared to control mice, at 40 days post-pSiNP injection. These results demonstrate the importance of the immobilized targeting antibodies to enhance cellular uptake and enable the in vivo generation of splenic regulatory T-cells.
Regulatory T-cells (Tregs) are important modulators of the immune system through their intrinsic suppressive functions. Systemic adoptive transfer of ex vivo expanded Tregs has been extensively investigated for allogeneic transplantation. Due to the time-consuming and costly expansion protocols of Tregs, more targeted approaches could be beneficial. The encapsulation of human natural and induced Tregs for localized immunosuppression is described for the first time. Tregs encapsulated in alginate-gelatin methacryloyl hydrogel remain viable, phenotypically stable, functional, and confined in the structure. Supplementation of the hydrogel with the Treg-specific bioactive factors interleukin-2 and chemokine ligand 1 improves Treg viability, suppressive phenotype, and function, and attracts to the structure CCR8 + T-cells enriched with anti-inflammatory subpopulations, including Tregs, from human peripheral blood. Furthermore, these findings are applicable to 3D bioprinting. Co-axial printing of murine pancreatic islets with human natural and induced Tregs protects the islets from xenoresponse upon co-culture with human peripheral blood mononuclear cells. This establishes the co-encapsulation of Tregs by co-axial 3D bioprinting as a valid option for providing local immune protection to allogeneic cellular transplants such as pancreatic islets.
Objectives Regulatory T cells (Tregs) are a vital sub‐population of CD4+ T cells with major roles in immune tolerance and homeostasis. Given such properties, the use of regulatory T cells for immunotherapies has been extensively investigated, with a focus on adoptive transfer of ex vivo expanded natural Tregs (nTregs). For immunotherapies, induced Tregs (iTregs), generated in vitro from naïve CD4+ T cells, provide an attractive alternative, given the ease of generating cell numbers required for clinical dosage. While the combination of TGF‐β, ATRA and rapamycin has been shown to generate highly suppressive iTregs, the challenge for therapeutic iTreg generation has been their instability. Here, we investigate the impact of rapamycin concentrations and α‐CD3/CD28 bead ratios on human iTreg stability. Methods We assess iTregs generated with various concentrations of rapamycin and differing ratios of α‐CD3/CD28 beads for their differentiation, stability, expression of Treg signature molecules and T helper effector cytokines, and Treg‐specific demethylation region (TSDR) status. Results iTregs generated in the presence of TGF‐β, ATRA, rapamycin and a higher ratio of α‐CD3/CD28 beads were highly suppressive and stable upon in vitro re‐stimulation. These iTregs exhibited a similar expression profile of Treg signature molecules and T helper effector cytokines to nTregs, in the absence of TSDR demethylation. Conclusion This work establishes a method to generate human iTregs which maintain stable phenotype and function upon in vitro re‐stimulation. Further validation in pre‐clinical models will be needed to ensure its suitability for applications in adoptive transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.