Purpose: To (a) characterize the fundamental optical and dosimetric properties of the storage phosphor europium-doped potassium chloride for quantitative proton dosimetry, and (b) investigate if its dose radiation response can be described by an analytic radiation transport model. Methods: Cylindrical KCl:Eu 2+ dosimeters with dimensions of 6 mm diameter and 1 mm thickness were fabricated in-house. The dosimeters were irradiated using both a Mevion S250 passive scattering proton therapy system and a Varian Clinac iX linear accelerator. Photostimulated luminescence (PSL) emission spectra, excitation spectra, and luminescence lifetimes were measured for both proton and photon irradiations. Dosimetric properties including radiation hardness, dose linearity, signal stabilization, dose rate sensitivity, and energy dependence were studied using a laboratory optical reader after irradiations. The dosimeters were modeled using physical quantities including mass stopping powers in the storage phosphor and water for a given proton beam, and mass energy absorption coefficients and massing stopping powers in detector and water for a given photon beam. Results: KCl:Eu 2+ exhibited optical emission and stimulation peaks at 421 and 560 nm, respectively, for both proton and photon irradiations, enabling postirradiation readouts using a visible light source while detecting the PSL using a photomultiplier tube. KCl:Eu 2+ showed a linear response from 0 to 8 Gy absorbed dose-to-water, a large dynamic range up to 60 Gy, dose-rate independence measured from 83 to 500 MU/min, and a PSL lifetime of <5 ms that is sufficiently short for supporting rapid scanning in a two-dimensional geometry. KCl:Eu 2+ was highly reusable with only a slight signal decrease of~3% at accumulated doses over 100 Gy, which could be managed by a periodic recalibration. The detected PSL signal strength of the dosimeter in the proton field had been calculated accurately to a maximum discrepancy of 2% using known physical quantities along with its prior signal strength as measured in a photon field at the same dose-to-water. This discrepancy might be attributed to an under-response due to linear energy transfer (LET) effect. However, comparisons of depth-dose measurements in a spread-out Bragg peak (SOBP) field with a parallel-plate ionization chamber showed no clear evidence of LET effects. Furthermore, range measurements agreed with ionization chamber measurements to within 1 mm. Conclusions: KCl:Eu 2+ showed linear response over a large dynamic range for proton irradiations and reliably reproduced SOBP measurements as measured by ionization chambers. Its relatively low atomic number of 18 and near LET independence make it suited for quantitative proton dosimetry. In addition, its high radiation hardness means that it can be reused numerous times. Any potential measurement artifacts encountered in complex irradiation conditions should be able to be corrected for using known physical quantities.
To investigate the feasibility of using the high Z eff storage phosphor material BaFBrI:Eu 2+ in conjunction with the low Z eff storage phosphor material KCl:Eu 2+ for simultaneous proton dose and linear energy transfer (LET) measurements by (a) measuring the fundamental optical and dosimetric properties of BaFBrI:Eu 2+ , (b) evaluating its compatibility in being readout simultaneously with KCl:Eu 2+ dosimeters, and (c) modeling and validating its LET dependence under elevated proton LET irradiation. Methods: A commercial BaFBrI:Eu 2+ storage phosphor detector (Model ST-VI, Fujifilm) was characterized with energy dispersive x-ray spectroscopy (EDS) analysis to obtain its elemental composition. The dosimeters were irradiated using both a Mevion S250 proton therapy unit (at the center of a spread-out Bragg peak, SOBP) and a Varian Clinac iX linear accelerator with the latter being a low LET irradiation. The photostimulated luminescence (PSL) emission spectra, excitation spectra, and luminescent lifetimes of the detector were measured after proton and photon irradiations. Dosimetric properties including dose linearity, dose rate dependence, radiation hardness, temporal, and readout stabilities were studied using a laboratory optical reader after proton irradiations. In addition, its proton energy dependence was analytically modeled and experimentally validated by irradiating the detectors at various depths within the SOBP (Range: 15.0 g/ cm 2 , Modulation: 10.0 g/cm 2 ). Results: The active detector composition for the high Z eff storage phosphor detector was found to be BaFBr 0.85 I 0.15 :Eu 2+ . The BaFBr 0.85 I 0.15 :Eu 2+ material's excitation and emission spectra were in agreement under proton and photon irradiations, with peaks of 586 AE 1 nm and 400 AE 1 nm, respectively, with a full width at half maximum (FWHM) of 119 AE 3 nm and 30 AE 2 nm, respectively. As dosimeter response under photon irradiation is generally believed to be free from LET effect, these results suggest LET independence of charge storage center types resulted from ionizing radiations. There is sufficient spectral overlaps with KCl:Eu 2+ dosimeters allowing both dosimeters to be readout under equivalent readout conditions, that is, 594 nm stimulation and 420 nm detection wavelengths. Its PSL characteristic lifetime was found to be less than 5 microseconds which would make it suitable for fast 2D readout post irradiation. Its 420 nm emission band intensity was found to be linear up to 10 Gy absolute proton dose under the same irradiation conditions, dose rate independent, stable in time and under multiple readouts, and with high radiation hardness under cumulative proton dose histories up to 200 Gy as tested in this study. BaFBr 0.85 I 0.15 :Eu 2+ showed significant proton energy-dependent dose under-response in regions of high LET which could be modeled by stopping power ratio calculations with an accuracy of 3% in low LET regions and a distance-toagreement (DTA) of 1 mm in high LET regions (>5 keV/μm). Conclusion:We have proven the feasibi...
Purpose Accurate two‐dimensional (2D) profile measurements at submillimeter precision are necessary for proton beam commissioning and periodic quality assurance (QA) purposes and are currently performed at our institution with a commercial scintillation detector (Lynx PT) with limited means for independent checks. The purpose of this work was to create an independent dosimetry system consisting of an in‐house optical scanner and a BaFBrI:Eu2+ storage phosphor dosimeter by: (a) determining the optimal settings for the optical scanner, (b) measuring 2D proton spot profiles with the storage phosphors, and (c) comparing them to similar measurements using a commercial scintillation detector. Methods An in‐house 2D laboratory optical scanner was constructed and spatially calibrated for accurate 2D photostimulated luminescence (PSL) dosimetry. Square 5 × 5 cm2 BaFBrI:Eu2+ dosimeter samples were uniformly irradiated with line scans performed to determine the physical and electronic scanner settings resulting in the highest signal‐to‐noise ratios (SNR) at a sub‐millimeter spatial resolution. The resultant spatial resolution of the scanner was then quantitatively assessed by measuring (a) line pairs on a standard X‐ray lead bar phantom and (b) modulation transfer functions. Following this, 2D proton spot profiles from a Mevion S250i Hyperscan proton unit were obtained at 1, 10, 20, 30, 40, and 50 monitor unit (MU) settings at maximum energy (E0 = 227.1 MeV) and compared to baseline profiles from a commercial scintillation detector, where 1 MU is calibrated to deliver 1 Gy absolute proton dose‐to‐water under reference conditions, that is, 41 × 41 proton spots uniformly spaced by 0.25 cm within a 10 × 10 cm2 square field size at maximum energy (227.1 MeV) in water at depth of 5 cm at isocenter. The dosimetric system's sensitivities to (a) ±1 mm positional shifts and (b) ±0.3 mm beam lateral spread changes were quantitatively evaluated through a Gaussian fitting of the crossline and inline plots of the respective artificially shifted beam profiles. Results The physical scanner settings of (a) Δτ = 27 ms time interval between data samples, (b) vx = 1.235 cm/s scanning speed, (c) 1% laser transmission (0.02 mW power) and (d) (Δx, Δy) = (0.33, 0.50 mm) pixel sizes with electronic settings of (a) 300 microseconds time constant, (b) normal dynamic reserve, (c) 24 dB/oct low pass filter slope, and (d) 160 Hz chopping frequency resulted in the highest SNR while maintaining sub‐millimeter spatial resolution. The BaFBr0.85I0.15:Eu2+ storage phosphor dosimeters were linear from 1 to 50 MU and their profiles did not saturate up to 150 MU. The scanner was able to detect lateral displacements of ±1 mm in both the crossline and inline directions and ±0.3 mm beam spread changes that were artificially introduced by varying the incident proton energy. Specific to our proton unit, proton energy changes of ±1 MeV can also be detected indirectly via beam spread measurements. Conclusion Our combined dosimetric system including an in‐hous...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.