Vascular endothelial growth factor C (VEGF-C) has been identified as a multifaceted factor participating in the regulation of tumor angiogenesis and lymphangiogenesis. VEGF-C is not only expressed in endothelial cells, but also in tumor cells. VEGF-C signaling is important for progression of various cancer types through both VEGF receptor-2 (VEGFR-2) and VEGF receptor-3 (VEGFR-3). Likewise, both receptors are expressed mainly on endothelial cells, but also expressed in tumor cells. The dimeric VEGF-C undergoes a series of proteolytic cleavage steps that increase the protein binding affinity to VEGFR-3; however, only complete processing, removing both the N- and C-terminal propeptides, yields mature VEGF-C that can bind to VEGFR-2. The processed VEGF-C can bind and activate VEGFR-3 homodimers and VEGFR-2/VEGFR-3 heterodimers to elicit biological responses. High levels of VEGF-C expression and VEGF-C/VEGFRs signaling correlate significantly with poorer prognosis in a variety of malignancies. Therefore, the development of new drugs that selectively target the VEGF-C/VEGFRs axis seems to be an effective means to potentiate anti-tumor therapies in the future.
Fungal allergens are associated with the development of asthma, and some have been characterized as proteases. Here, we established an animal model of allergic airway inflammation in response to continuous exposure to proteolytically active Pen c 13, a major allergen secreted by Penicillium citrinum. In functional analyses, Pen c 13 exposure led to increased airway hyperresponsiveness, significant inflammatory cell infiltration, mucus overproduction, and collagen deposition in the lung, dramatically elevated serum levels of total IgE and Pen c 13-specific IgE and IgG1, and increased production of the Th2 cytokines IL-4, IL-5, and IL-13 by splenocytes stimulated in vitro with Pen c 13. To examine the mechanisms involved in the regulation of allergenicity by Pen c 13, we performed two-dimensional fluorescence difference gel electrophoresis analysis combined with nano-LC-MS/MS, followed by bioinformatics analysis to identify potential targets that associated with allergic inflammation, which suggested that galectin-3 and laminin might be involved in novel pathogenic mechanisms. Finally, we focused on junctional proteins between cells, because, in addition to opening of the epithelial barrier by environmental proteases possibly being the initial step in the development of asthma, these proteins are also associated with actin rearrangement. Taken together, our findings indicate that Pen c 13 exposure causes junctional structure alterations and actin cytoskeletal rearrangements, resulting in increased permeability and airway structural changes. These effects probably change the lung microenvironment and foster the development of allergic sensitization.
Background: Osteosarcoma is the most common primary malignant bone tumor in children and adolescents and has also been associated with a high degree of malignancy and enhanced metastatic capacity. Curcumin (CUR) is well known for its anti-osteosarcoma activity. However, both demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are natural curcumin analogues/congeners from turmeric whose role in osteosarcoma development remains unknown. Methods: To evaluate the growth inhibitory effects of CUR, DMC and BDMC on osteosarcoma (HOS and U2OS), breast (MDA-MB-231), and melanoma (A2058) cancer cells, we employed the MTT assay, annexin V-FITC /7-AAD staining, and clonogenic assay. Results: CUR,DMC, and BDMC all decreased the viability of HOS, U2OS, MDA-MB-231, and A2058 cancer cells. Additionally, CUR,DMC, and BDMC induced the apoptosis of HOS cells through activation of Smad 2/3 or repression of Akt signaling pathway. Furthermore, the combination of CUR,DMC, and BDMC synergistically reduced cell viability, colony formation and increased apoptosis than either two or a single agent in HOS cells. Conclusions: The combination of these three compounds could be used as a novel target for the treatment of osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.