SUMMARYIn this paper, we employ the regularized meshless method to solve antiplane shear problems with multiple inclusions. The solution is represented by a distribution of double-layer potentials. The singularities of kernels are regularized by using a subtracting and adding-back technique. Therefore, the troublesome singularity in the method of fundamental solutions (MFS) is avoided and the diagonal terms of influence matrices are determined. An inclusion problem is decomposed into two parts: one is the exterior problem for a matrix with holes subjected to remote shear, the other is the interior problem for each inclusion. The two boundary densities, essential and natural data, along the interface between the inclusion and matrix satisfy the continuity and equilibrium conditions. A linear algebraic system is obtained by matching boundary conditions and interface conditions. Finally, numerical results demonstrate the accuracy of the present solution. Good agreements are obtained and compare well with analytical solutions and Gong's results.
The desingularized meshless method (DMM) has been successfully used to solve boundary-value problems with specified boundary conditions (a direct problem) numerically. In this paper, the DMM is applied to deal with the problems with over-specified boundary conditions. The accompanied ill-posed problem in the inverse problem is remedied by using the Tikhonov regularization method and the truncated singular value decomposition method. The numerical evidences are given to verify the accuracy of the solutions after comparing with the results of analytical solutions through several numerical examples. The comparisons of results using Tikhonov method and truncated singular value decomposition method are also discussed in the examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.