The fall armyworm (FAW) Spodoptera frugiperda is thought to have undergone a rapid ‘west-to-east’ spread since 2016 when it was first identified in western Africa. Between 2018 and 2020, it was recorded from South Asia (SA), Southeast Asia (SEA), East Asia (EA), and Pacific/Australia (PA). Population genomic analyses enabled the understanding of pathways, population sources, and gene flow in this notorious agricultural pest species. Using neutral single nucleotide polymorphic (SNP) DNA markers, we detected genome introgression that suggested most populations in this study were overwhelmingly C- and R-strain hybrids (n = 252/262). SNP and mitochondrial DNA markers identified multiple introductions that were most parsimoniously explained by anthropogenic-assisted spread, i.e., associated with international trade of live/fresh plants and plant products, and involved ‘bridgehead populations’ in countries to enable successful pest establishment in neighbouring countries. Distinct population genomic signatures between Myanmar and China do not support the ‘African origin spread’ nor the ‘Myanmar source population to China’ hypotheses. Significant genetic differentiation between populations from different Australian states supported multiple pathways involving distinct SEA populations. Our study identified Asia as a biosecurity hotspot and a FAW genetic melting pot, and demonstrated the use of genome analysis to disentangle preventable human-assisted pest introductions from unpreventable natural pest spread.
Asian planthoppers (Hemiptera: Delphacidae) that include brown planthoppers (BPH, Nilaparvata lugens, Stål), white-backed planthoppers (WBPH, Sogatella furcifera, Horváth), and small brown planthoppers (SBPH, Laodelphax striatellus, Fallén) are the primary sucking-type pests of rice. These three insects share morphological and sequence similarities. As insecticide resistance patterns and control strategies vary according to species, the accurate discrimination of these species is important. Here, we developed six species-specific primers based on partial mitochondrial genome sequences. The primers were successfully used in multiplex PCR, loop-mediated isothermal amplification (LAMP) assays, and conventional PCR. Here, we used genomic DNA obtained using the DNA-releasing technique (tissue samples were incubated at 95 °C for 5 min with 30 μL nuclease-free water, and the supernatant was used). We showed that multiplex PCR could analyze the density of each species following a mass collection in the field; the LAMP assay can diagnose the species within 40 min; conventional PCR can be widely applied to a large number of field samples, as well as individuals or mass collections. In conclusion, these results demonstrate the potential of the species-specific primers and DNA-releasing technique for accurate multiplex PCR and LAMP assays, which may assist the intensive field monitoring of integrated management of these species.
The fall armyworm (Spodoptera frugiperda, FAW) is an invasive migratory pest that has recently spread to Korea, damaging several corn cultivars with significant economic value. Comparisons of the growth stages of FAW were conducted based on the preferred feed. Therefore, we selected six maize cultivars, including three categories: (i) commercial waxy corn (mibaek 2-ho, heukjeom 2-ho, dreamoak); (ii) popcorn (oryun popcorn, oryun 2-ho); and (iii) processing corn (miheukchal). A significant effect was observed during the larvae period, pupal period, egg hatching ratio, and larvae weight, whereas the total survival period and adult period did not show significant variation among the tested corn cultivars. We identified variations in the FAW gut bacterial community that were dependent on the genotype of the corn maize feed. The identified phyla included Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Among these genera, the most abundant bacterial genus was Enterococcus, followed by Ureibacillus. Enterococcus mundtii was the most abundant among the top 40 bacterial species. The intergenic PCR-based amplification and gene sequence of the colony isolates were also matched to the GenBank owing to the prevalence of E. mundtii. These results showed that the bacterial diversity and abundance of particular bacteria in the guts of FAWs were influenced by the six major maize corn cultivars.
Aedes albopictus is native to Southeast Asia and has emerged as a major vector for vector-borne diseases that are spreading rapidly worldwide. Recent studies have shown that Ae. albopictus populations have different genetic groups dependent on their thermal adaptations; however, studies on Korean populations are limited. In this study, we analyzed the genetic diversity and structure of two mitochondrial genes (COI and ND5) and sixteen microsatellites in mosquitoes inhabiting Korea, Japan, and Laos. The results indicate that the Korean population has low genetic diversity, with an independent cluster distinct from the Laos population. Mixed clusters have also been observed in the Korean population. On the basis of these findings, two hypotheses are proposed. First, certain Korean populations are native. Second, some subpopulations that descended from the metapopulation (East Asian countries) were introduced to Japan before migrating to Korea. Furthermore, we previously demonstrated that Ae. albopictus appears to have been imported to Korea. In conclusion, the dengue-virus-carrying mosquitoes could migrate to Korea from Southeast Asian epidemic regions, where they can survive during the severe winter months. The key findings can be used to establish an integrated pest management strategy based on population genetics for the Korean Ae. albopictus population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.