Steroidal glycoalkaloids (SGAs) such as α-solanine found in solanaceous food plants--as, for example, potato--are antinutritional factors for humans. Comparative coexpression analysis between tomato and potato coupled with chemical profiling revealed an array of 10 genes that partake in SGA biosynthesis. We discovered that six of them exist as a cluster on chromosome 7, whereas an additional two are adjacent in a duplicated genomic region on chromosome 12. Following systematic functional analysis, we suggest a revised SGA biosynthetic pathway starting from cholesterol up to the tetrasaccharide moiety linked to the tomato SGA aglycone. Silencing GLYCOALKALOID METABOLISM 4 prevented accumulation of SGAs in potato tubers and tomato fruit. This may provide a means for removal of unsafe, antinutritional substances present in these widely used food crops.
Strawberry contains high levels of micronutrients and phytochemical compounds. These exhibit functional roles in plant growth and metabolism and are also essential for the nutritional and organoleptic qualities of the fruit. The aim of the present work was to better characterize the phytochemical and antioxidant profiles of the fruit of nine different genotypes of strawberry, by measuring the total flavonoid, anthocyanin, vitamin C, and folate contents. Cultivar effects on the total antioxidant capacities of strawberries were also tested. In addition, the individual contribution of the main antioxidant compounds was assessed by HPLC separation coupled to an online postcolumn antioxidant detection system. This study showed the important role played by the genetic background on the chemical and antioxidant profiles of strawberry fruits. Significant differences were found between genotypes for the total antioxidant capacity and for all tested classes of compounds. The HPLC analyses confirmed qualitative and quantitative variability in the antioxidant profiles. These studies show that differences exist among cultivars, applicable in dietary studies in human subjects.
BackgroundFlavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules.ResultSaccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations (<5.5 μM). To optimize naringenin titers, a yeast chassis strain was developed. Synthesis of aromatic amino acids was deregulated by alleviating feedback inhibition of 3-deoxy-d-arabinose-heptulosonate-7-phosphate synthase (Aro3, Aro4) and byproduct formation was reduced by eliminating phenylpyruvate decarboxylase (Aro10, Pdc5, Pdc6). Together with an increased copy number of the chalcone synthase gene and expression of a heterologous tyrosine ammonia lyase, these modifications resulted in a 40-fold increase of extracellular naringenin titers (to approximately 200 μM) in glucose-grown shake-flask cultures. In aerated, pH controlled batch reactors, extracellular naringenin concentrations of over 400 μM were reached.ConclusionThe results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.
Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains - the immobilization on the biosensor surface. This minireview highlights recent approaches to immobilize and study Abs on surfaces. We first introduce Ab species used as detection elements, and discuss techniques recently used to elucidate Ab orientation by determination of layer thickness or surface topology. Then, several immobilization methods will be presented: non-covalent and covalent surface attachment, yielding oriented or random coupled Abs. Finally, protein modification methods applicable for oriented Ab immobilization are reviewed with an eye to future application.
Volatile esters are flavor components of the majority of fruits. The last step in their biosynthesis is catalyzed by alcohol acyltransferases (AATs), which link alcohols to acyl moieties. Full-length cDNAs putatively encoding AATs were isolated from fruit of wild strawberry (Fragaria vesca) and banana (Musa sapientum) and compared to the previously isolated SAAT gene from the cultivated strawberry (Fragaria 3 ananassa). The potential role of these enzymes in fruit flavor formation was assessed. To this end, recombinant enzymes were produced in Escherichia coli, and their activities were analyzed for a variety of alcohol and acyl-CoA substrates. When the results of these activity assays were compared to a phylogenetic analysis of the various members of the acyltransferase family, it was clear that substrate preference could not be predicted on the basis of sequence similarity. In addition, the substrate preference of recombinant enzymes was not necessarily reflected in the representation of esters in the corresponding fruit volatile profiles. This suggests that the specific profile of a given fruit species is to a significant extent determined by the supply of precursors. To study the in planta activity of an alcohol acyltransferase and to assess the potential for metabolic engineering of ester production, we generated transgenic petunia (Petunia hybrida) plants overexpressing the SAAT gene. While the expression of SAAT and the activity of the corresponding enzyme were readily detected in transgenic plants, the volatile profile was found to be unaltered. Feeding of isoamyl alcohol to explants of transgenic lines resulted in the emission of the corresponding acetyl ester. This confirmed that the availability of alcohol substrates is an important parameter to consider when engineering volatile ester formation in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.