This paper investigates the robustness of the conventional mean-variance (MV) optimization model by making two adjustments within the MV formulation. First, the portfolio selection based on a behavioral decision-making theory that encapsulates the MV statistics and investors psychology. The second aspect involves capturing the portfolio asset dependence structure through copula. Using the behavioral MV (BMV) and the copula behavioral MV (CBMV), the results show that stocks with lower behavioral scores outperform counterpart portfolios with higher behavioral scores. On the other hand, in the Forex market, the reverse is observed for the BMV approach, while the CBMV remains consistent.
This paper focuses on the selection and optimisation of a cryptoasset portfolio, using the K-means clustering algorithm and GARCH C-Vine copula model combined with the differential evolution algorithm. This integrated approach allows the construction of a diversified portfolio of eight cryptocurrencies and determines an optimal allocation strategy making it possible to minimize the conditional value-at-risk of the portfolio and maximise the return. Our results show that stablecoins such as True-USD are negatively correlated to the other cryptoassets in the portfolio and could therefore be a safe haven for crypto-investors during market turmoil. Our findings are in line with previous studies exhibiting stablecoins as potential diversifiers.
The success of Bitcoin has spurred emergence of countless alternative coins with some of them shutting down only few weeks after their inception, thus disappearing with millions of dollars collected from enthusiast investors through initial coin offering (ICO) process. This has led investors from the general population to the institutional ones, to become skeptical in venturing in the cryptocurrency market, adding to its highly volatile characteristic. It is then of vital interest to investigate the life span of available coins and tokens, and to evaluate their level of survivability. This will make investors more knowledgeable and hence build their confidence in hazarding in the cryptocurrency market. Survival analysis approach is well suited to provide the needed information. In this study, we discuss the survival outcomes of coins and tokens from the first release of a cryptocurrency in 2009. Non-parametric methods of time-to-event analysis namely Aalen Additive Hazards Model (AAHM) trough counting and martingale processes, Cox Proportional Hazard Model (CPHM) are based on six covariates of interest. Proportional hazards assumption (PHA) is checked by assessing the Kaplan-Meier estimates of survival functions at the levels of each covariate. The results in different regression models display significant and non-significant covariates, relative risks and standard errors. Among the results, it was found that cryptocurrencies under standalone blockchain were at a relatively higher risk of collapsing. It was also found that the 2013–2017 cryptocurrencies release was at a high risk as compared to 2009–2013 release and that cryptocurrencies for which headquarters are known had the relatively better survival outcomes. This provides clear indicators to watch out for while selecting the coins or tokens in which to invest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.