Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.
How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene-Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains.
The scent gland secretion of Austropurcellia forsteri was analyzed by gas chromatography–mass spectrometry, providing the first description of the secretion chemistry in the cyphophthalmid family Pettalidae. The secretion contained a total of 21 compounds: About 60% of the whole secretion consisted of a series of saturated, mono-unsaturated and doubly unsaturated methylketones, from C11 to C15, with a cluster of saturated and mono-unsaturated C13-methylketones dominating. A second fraction included several naphthoquinones such as 1,4-naphthoquinone (ca. 20% of secretion), 6-methyl-1,4-naphthoquinone (ca. 17%), and minor amounts of chloronaphthoquinones (ca. 2%). When compared with scent gland compositions of other representatives of cyphophthalmids (e.g. from families Sironidae and Stylocellidae), a highly conservative chemistry of cyphophthalmid secretions is apparent, based on a restricted number of methylketones and naphthoquinones.
The braincase and inner ear of 'Metriorhynchus' cf. 'M.' brachyrhynchus -implications for aquatic sensory adaptations in crocodylomorphs
Tyrannosaurus rex and other tyrannosaurid dinosaurs were apex predators during the latest Cretaceous, which combined giant size and advanced neurosensory systems. Computed tomography (CT) data have shown that tyrannosaurids had a trademark system of a large brain, large olfactory bulbs, elongate cochlear ducts, and expansive endocranial sinuses surrounding the brain and sense organs. Older, smaller tyrannosauroid relatives of tyrannosaurids developed some, but not all, of these features, raising the hypothesis that tyrannosaurid‐style brains evolved before the enlarged tyrannosaurid‐style sinuses, which might have developed only with large body size. This has been difficult to test, however, because little is known about the brains and sinuses of the first large‐bodied tyrannosauroids, which evolved prior to Tyrannosauridae. We here present the first CT data for one of these species, Bistahieversor sealeyi from New Mexico. Bistahieversor had a nearly identical brain and sinus system as tyrannosaurids like Tyrannosaurus, including a large brain, large olfactory bulbs, reduced cerebral hemispheres, and optic lobes, a small tab‐like flocculus, long and straight cochlear ducts, and voluminous sinuses that include a supraocciptal recess, subcondyar sinus, and an anterior tympanic recess that exits the braincase via a prootic fossa. When characters are plotted onto tyrannosauroid phylogeny, there is a two‐stage sequence in which features of the tyrannosaurid‐style brain evolved first (in smaller, nontyrannosaurid species like Timurlengia), followed by features of the tyrannosaurid‐style sinuses (in the first large‐bodied nontyrannosaurid tyrannosauroids like Bistahieversor). This suggests that the signature tyrannosaurid sinus system evolved in concert with large size, whereas the brain did not. Anat Rec, 303:1043–1059, 2020. © 2020 American Association for Anatomy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.