Bartonella henselae is a fastidious bacterium associated with infections in humans and cats. The mechanisms involved in the long-term survival of bartonellae despite vigorous host immune responses are poorly understood. Generation of genetic variants is a possible strategy to circumvent the host specific immune responses. The authors have recently demonstrated the coexistence of different genetic variants within the progeny of three primary B. henselae isolates from Berlin by PFGE analysis. Aims of the present study were to determine whether coexistence of different variants is a common feature of B. henselae isolates worldwide and whether the genetic variants originally emerged in vivo. Thirty-four primary isolates from different geographical regions were analysed by subjecting multiple single-colony-derived cultures to PFGE analysis. Up to three genetic variants were detected within 20 (58.8 %) isolates, indicating that most primary isolates display a mosaic-like structure. The close relatedness of the genetic variants within an isolate was confirmed by multi-locus sequence typing. In contrast to the primary isolates, no genetic variants were detected within the progeny of 20 experimental clones generated in vitro from 20 primary isolates, suggesting that the variants were not induced in vitro during the procedure of PFGE analysis. Hence, the genetic variants within a primary isolate most likely originally emerged in vivo. Consideration of the mosaic structure of primary isolates is essential when interpreting typing studies on B. henselae.
We analyzed the genetic relatedness of blood culture isolates of Bartonella henselae from 2 cats of patients with cat-scratch disease at admission and after 12 months. Isolates from each cat at different times were clonally unrelated, which suggested reinfection by a second strain.B artonella henselae is a zoonotic pathogen associated with a broad spectrum of disease manifestations in humans. Cat-scratch disease (CSD) is commonly encountered in immunocompetent patients; in immunocompromised patients, bacillary angiomatosis, peliosis hepatis, and recurrent bacteremia are usually seen. Domestic cats represent the main host and reservoir for B. henselae (1). Recurrent, intraerythrocytic bacteremia develops in infected cats without overt clinical symptoms (2). Experimental infection of specifi c pathogen-free cats with B. henselae induces recurrent episodes of bacteremia, which, in most cases, resolve spontaneously within 22-33 weeks postinfection (3-5). Prolonged bacteremia >7 months has been documented sporadically, e.g., in 1 of 12 experimentally infected cats inoculated with the highest infectious dose (this cat was bacteremic 32 weeks postinfection) (3), or in an unspecifi ed number of cases in 21 experimentally infected cats that were bacteremic 48 weeks postinfection (5).Few studies have investigated the course of recurrent bacteremia in naturally infected cats because follow-up investigations are diffi cult to conduct (1,6-9). Koehler et al.(1) detected recurrent bacteremia with a duration >2 months in 3 cats of patients with bacillary angiomatosis. Kordick et al. (6) reported positive blood cultures in cats of several CSD patients up to 14 months after collection of the initial positive culture. In the latter study, the fi rst blood culture was collected from the index cat of 1 CSD patient 22 months after the onset of the disease in the patient and contained B. henselae (7). Sander et al. (8) found repeated bacteremia in the cat of a CSD patient after 5 months and in 2 other cats after 1 year. In another study, B. henselae was isolated from the blood culture of a cat of a patient who had an episode 2.5 years earlier of debilitating fatigue with a duration of 1 month and without fever or lymphadenopathy (7). B. henselae was isolated again from the blood culture of the index cat after 5 months (7).In these studies, the question whether the cats were still infected by the initial B. henselae strain or had acquired a new strain was not addressed. It was concluded that the cats were persistently infected with B. henselae (8). We have recently demonstrated the appropriateness of pulsed-fi eld gel electrophoresis (PFGE) and multilocus sequence typing (MLST) for differentiation of B. henselae isolates to the strain level (10,11). Therefore, we analyzed the clonal relationship between sequential B. henselae isolates that were obtained at different times from the blood of 2 cats to determine whether recurrences were caused by the initial strain or a new strain. The StudyWe tested 4 isolates of B. henselae: FR96/BK36...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.