Carbonic, lactic, and pyruvic acids have been generated in aqueous solution by the transient protonation of their corresponding conjugate bases by a tailor-made photoacid, the 6-hydroxy-1-sulfonate pyrene sodium salt molecule. A particular goal is to establish the pKa of carbonic acid H2CO3. The on-contact proton transfer (PT) reaction rate from the optically excited photoacid to the carboxylic bases was derived, with unprecedented precision, from time-correlated single-photon-counting measurements of the fluorescence lifetime of the photoacid in the presence of the proton acceptors. The time-dependent diffusion-assisted PT rate was analyzed using the Szabo–Collins–Kimball equation with a radiation boundary condition. The on-contact PT rates were found to follow the acidity order of the carboxylic acids: the stronger was the acid, the slower was the PT reaction to its conjugate base. The pKa of carbonic acid was found to be 3.49 ± 0.05 using both the Marcus and Kiefer–Hynes free energy correlations. This establishes H2CO3 as being 0.37 pKa units stronger and about 1 pKa unit weaker, respectively, than the physiologically important lactic and pyruvic acids. The considerable acid strength of intact carbonic acid indicates that it is an important protonation agent under physiological conditions.
Reversible protonation (deprotonation) of a side-group is a useful and convenient way to affect the reactivity of large organic and biological molecules. We use bifunctional photoacids to demonstrate how the protonation state of a basic side-group (COO(-)) controls the reactivity of the main acidic group of the photoacid (OH), both in the ground and the electronic excited state of 6-carboxy derivatives of 2-naphthol.
6-Hydroxy-2-naphthoic acid and its sulfonate derivatives belong to a family of bifunctional photoacids where the -OH group acts as a proton donor and the -COO(-) group acts as a proton acceptor. Upon electronic excitation, the -OH group becomes more acidic and the -COO(-) group turns more basic. Change in the ionization state of one functional group causes a change (switch) in the reactivity of the other functional group. Using picosecond time-resolved and steady state spectroscopy, we find clear evidence for an ultrafast reactivity switch caused by a diffusional proton transfer through the water solvent between the two functional groups with no evidence of a concerted proton transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.