Modern large-scale astroparticle setups measure high-energy particles, gamma rays, neutrinos, radio waves, and the recently discovered gravitational waves. Ongoing and future experiments are located worldwide. The data acquired have different formats, storage concepts, and publication policies. Such differences are a crucial point in the era of Big Data and of multi-messenger analysis in astroparticle physics. We propose an open science web platform called ASTROPARTICLE.ONLINE which enables us to publish, store, search, select, and analyze astroparticle data. In the first stage of the project, the following components of a full data life cycle concept are under development: describing, storing, and reusing astroparticle data; software to perform multi-messenger analysis using deep learning; and outreach for students, post-graduate students, and others who are interested in astroparticle physics. Here we describe the concepts of the web platform and the first obtained results, including the meta data structure for astroparticle data, data analysis by using convolution neural networks, description of the binary data, and the outreach platform for those interested in astroparticle physics. The KASCADE-Grande and TAIGA cosmic-ray experiments were chosen as pilot examples.
High energy cosmic rays and gamma rays interacting the atmosphere produce extensive air showers (EAS) of secondary particles emitting Cherenkov light. Being detected with a telescope this light forms "images" of the air shower. In the TAIGA project, in addition to images obtained experimentally, model data are widely used. The difficulty is that the computational models of the underlying physical processes are very resource intensive, since they track the type, energy, position and direction of all secondary particles born in EAS. This can lead to a lack of model data for future experiments. To address this challenge, we applied a machine learning technique called Generative Adversarial Networks (GAN) to quickly generate images of two types: from gamma and protons events. As a training set, we used a sample of 2D images obtained using TAIGA Monte Carlo simulation software, containing about 50,000 events. It has been experimentally established that the generation results best fit the training set in the case when for two different types of events we create two different networks and train them separately. For gamma events a discriminator with a minimum number of convolutional layers was required, while for proton events, more stable and high-quality results are obtained if two additional fully connected layers are added to the discriminator. Testing the generators of both networks using third-party software showed that more than 90% of the generated images were found to be correct. Thus, the use of GAN provides reasonably fast and accurate simulations for the TAIGA project.
Modern experimental astroparticle physics features large-scale setups measuring different messengers, namely high-energy particles generated by cosmic accelerators (e.g. supernova remnants, active galactic nuclei, etc): cosmic and gamma rays, neutrinos and recently discovered gravitational waves. Ongoing and future experiments are distributed over the Earth including ground, underground/underwater setups as well as balloon payloads and spacecrafts. The data acquired by these experiments have different formats, storage concepts and publication policies. Such differences are a crucial issue in the era of big data and of multi-messenger analysis strategies in astroparticle physics. We propose a service ASTROPARTICLE.ONLINE in the frame of which we develop an open science system which enables to publish, store, search, select and analyse astroparticle physics data. The cosmic-ray experiments KASCADE-Grande and TAIGA were chosen as pilot experiments to be included in this framework. In the first step of our initiative we will develop and test the following components of the full data life cycle concept: (i) describing, storing and reusing of astroparticle data; (ii) software for performing multi-experiment and multi-messenger analyses like deep-learning methods; (iii) outreach including example applications and tutorial for students and scientists outside the specific research field. In the present paper we describe the concepts of our initiative, and in particular the plans toward a common, federated astroparticle data storage.
Using a cGAN for IACT Data AnalysisJulia Dubenskaya et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.