Background Environmental surface decontamination is a crucial tool to prevent the spread of infections in hospitals. However, manual cleaning and disinfection may be insufficient to eliminate pathogens from contaminated surfaces. Ultraviolet-C (UV-C) irradiation deploying autonomous disinfection devices, i.e. robots, are increasingly advertised to complement standard decontamination procedures with concurrent reduction of time and workload. Although the principle of UV-C based disinfection is proven, little is known about the operational details of UV-C disinfection delivered by robots. To explore the impact of a UV-C disinfection robot in the clinical setting, we investigated its usability and the effectiveness as an add-on to standard environmental cleaning and disinfection. Additionally, its effect on Candida auris, a yeast pathogen resistant to antifungals and disinfectants, was studied. Methods After setting the parameters “surface distance” and “exposure time” for each area as given by the manufacturer, the robot moved autonomously and emitted UV-C irradiation in the waiting areas of two hospital outpatient clinics after routine cleaning and/or disinfection. To quantify the efficacy of the robotic UV-C disinfection, we obtained cultures from defined sampling sites in these areas at baseline, after manual cleaning/disinfection and after the use of the robot. Four different C. auris strains at two concentrations and either in a lag or in a stationary growth phase were placed in these areas and exposed to UV-C disinfection as well. Results The UV-C irradiation significantly reduced the microbial growth on the surfaces after manual cleaning and disinfection. C. auris growth in the lag phase was inhibited by the UV-C irradiation but not in the presence of the rim shadows. The effects on C. auris in the stationary phase were differential, but overall C. auris strains were not effectively killed by the standard UV-C disinfection cycle. Regarding usability, the robot’s interface was not intuitive, requiring advanced technical knowledge or intensive training prior to its use. Additionally, the robot required interventions by the technical operator during the disinfection process, e.g. stopping due to unforeseen minor dislocation of items during the clinical service or due to moving individuals, making it a delicate high-tech device but not yet ready for the autonomous use in the clinical routine. Conclusions Presently, the UV-C robot tested in this study is not ready to be integrated in the environmental cleaning and disinfection procedures in our hospital. The single standard disinfection UV-C irradiation cycle is not sufficient to inactivate pathogens with augmented environmental resilience, e.g. C. auris, particularly when microbial loads are high.
Background The COVID-19 pandemic has resulted in the disruption of healthcare systems. Vienna General Hospital (VGH), a tertiary hospital located in Austria, ran at almost full capacity despite high levels of community SARS-CoV-2 transmission and limited isolation room capacity. To ensure safe patient care, a bundle of infection prevention and control (IPC) measures including universal pre-admission screening and serial SARS-CoV-2 testing during hospitalization was implemented. We evaluated whether testing as part of our IPC approach was effective in preventing hospital outbreaks during different stages of the pandemic. Methods In this retrospective single center study, we analyzed the SARS-CoV-2 PCR test results of cases admitted to VGH between a low (15/05/2020–01/08/2020) and a high incidence period (15/09/2020–18/05/2021). Outcomes were the diagnostic yield of (a) admission screening, (b) the yield of serial testing during hospitalization and (c) the occurrence of healthcare-associated COVID-19 (HA-COVID-19) and SARS-CoV-2 related hospital outbreaks. Results The admission test positivity rate was 0.2% during the low and 2.3% during the high incidence phase. Regarding test conversions, 0.04% (low incidence phase) and 0.5% (high incidence phase) of initially negative cases converted to a positive test result within 7 days after admission The HA-COVID-19 incidence rate per 100,000 patient days was 1.0 (low incidence phase) and 10.7 (high incidence phase). One COVID-19 outbreak affecting eight patients in total could be potentially ascribed to the non-compliance with our IPC protocol. Conclusion Testing in conjunction with other IPC measures enabled the safe provision of patient care at a hospital with predominantly shared patient rooms despite high case numbers in the community.
Rates of invasive aspergillosis (IA) among COVID-19 ICU patients seem to reach over 30% in certain settings. At Vienna General Hospital (VGH), all rooms in COVID-19 ICUs were put under negative pressure as a protective measure, thus increasing the risk of exposure to environmental pathogens for patients. Even though all ICU patients are surveilled for healthcare-associated infections (HAI), there were concerns that the routine protocol might not be sufficient for IA detection. We reviewed the electronic patient charts of all patients with COVID-19 admitted to ICUs between 1 March 2020 and 31 July 2021 for fungal co- or superinfections, comparing four diagnostic algorithms based on different recommendations for the diagnosis of IA (according to EORTC/MSG, BM-AspICU, IAPA and CAPA) to our routine surveillance protocol. We found that out of 252 patients who were admitted to the ICU during the study period, 25 (9.9%) fulfilled the criteria of probable or possible IA of at least one algorithm. The IAPA definitions detected 25 and the CAPA definition 23 probable and 2 possible cases, out of which only 16 were classified as hospital-acquired IA by routine surveillance. In conclusion, adjustment of the routine protocol using a classification system especially designed for respiratory viral illness seems useful for the surveillance of IA in a highly vulnerable patient cohort.
Background The COVID-19 pandemic has profoundly challenged societies and healthcare systems in particular. To prevent the spread of SARS-CoV-2, infection prevention and control (IPC) strategies had to be developed on the local, national and international level. The aim of this study is to provide details of the COVID-19 experience at the Vienna General Hospital (VGH) in the context of the national and international COVID-19 response for learning and improvement. Methods This is a retrospective report, outlining the evolution of IPC measures and challenges encountered at the health facility (VGH), the national (Austria) and global level between February 2020 and October 2022. Results The IPC strategy at the VGH has been continuously adapted to changes in the epidemiological setting, new legal directives and Austrian by-laws. The current strategy, nationally and internationally, focuses on endemicity rather than maximum transmission risk reduction. For the VGH, this has recently resulted in an increase in COVID-19 clusters. To protect our particularly vulnerable patients, many COVID-19 precautions have been maintained. Barriers to adequate IPC implementation at the VGH and other hospitals include a lack of sufficient isolation options and non-adherence with universal face mask regulations. Globally, misinformation on COVID-19 hampered an effective response. Conclusions This retrospective analysis of the COVID-19 response at the VGH and international reports underline the need for pandemic preparedness, readiness and response by improving future hospital design and infrastructure, conducting regular trainings for protective attire and increasing health literacy as now recently published in a concise document by WHO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.