In preparation for bidirectional replication, the origin recognition complex (ORC) loads two MCM helicases forming a head-to-head double hexamer (DH) around DNA 1,2. How DH formation occurs is debated. Single-molecule experiments suggest a sequential mechanism whereby ORCdependent loading of the first hexamer drives second hexamer recruitment 3. In contrast, biochemical data show that two rings are loaded independently via the same ORC-mediated mechanism, at two inverted DNA sites 4,5. We visualized MCM loading using time-resolved EM, to identify DH formation intermediates. We confirm that both hexamers are recruited via the same interaction between the MCM and ORC C-terminal domains, and identify the mechanism for coupled MCM loading. A first loaded hexamer locked around DNA is recognized by ORC, which unexpectedly engages the N-terminal homo-dimerization interface of MCM. In this configuration, ORC is poised to direct second hexamer recruitment in an inverted orientation, suitable for DH formation. Our data reconcile two apparently contrasting models. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
The activation of eukaryotic origins of replication occurs in temporally separated steps to ensure that chromosomes are copied only once per cell cycle. First, the MCM helicase is loaded onto duplex DNA as an inactive double hexamer. Activation occurs after the recruitment of a set of firing factors that assemble two Cdc45–MCM–GINS (CMG) holo-helicases. CMG formation leads to the underwinding of DNA on the path to the establishment of the replication fork, but whether DNA becomes melted at this stage is unknown1. Here we use cryo-electron microscopy to image ATP-dependent CMG assembly on a chromatinized origin, reconstituted in vitro with purified yeast proteins. We find that CMG formation disrupts the double hexamer interface and thereby exposes duplex DNA in between the two CMGs. The two helicases remain tethered, which gives rise to a splayed dimer, with implications for origin activation and replisome integrity. Inside each MCM ring, the double helix becomes untwisted and base pairing is broken. This comes as the result of ATP-triggered conformational changes in MCM that involve DNA stretching and protein-mediated stabilization of three orphan bases. Mcm2 pore-loop residues that engage DNA in our structure are dispensable for double hexamer loading and CMG formation, but are essential to untwist the DNA and promote replication. Our results explain how ATP binding nucleates origin DNA melting by the CMG and maintains replisome stability at initiation.
Loading of the eukaryotic replicative helicase onto replication origins involves two MCM hexamers forming a double hexamer (DH) around duplex DNA. During S phase, helicase activation requires MCM phosphorylation by Dbf4-dependent kinase (DDK), comprising Cdc7 and Dbf4. DDK selectively phosphorylates loaded DHs, but how such fidelity is achieved is unknown. Here, we determine the cryogenic electron microscopy structure of Saccharomyces cerevisiae DDK in the act of phosphorylating a DH. DDK docks onto one MCM ring and phosphorylates the opposed ring. Truncation of the Dbf4 docking domain abrogates DH phosphorylation, yet Cdc7 kinase activity is unaffected. Late origin firing is blocked in response to DNA damage via Dbf4 phosphorylation by the Rad53 checkpoint kinase. DDK phosphorylation by Rad53 impairs DH phosphorylation by blockage of DDK binding to DHs, and also interferes with the Cdc7 active site. Our results explain the structural basis and regulation of the selective phosphorylation of DNA-loaded MCM DHs, which supports bidirectional replication.
Breast cancer is the most common cancer in women worldwide. The tumor microenvironment contributes to tumor progression by inducing cell dissemination from the primary tumor and metastasis. TGFβ signaling is involved in breast cancer progression and is specifically elevated during metastatic transformation in aggressive breast cancer. In this study, we performed genomewide correlation analysis of TGFBR2 expression in a panel of 51 breast cancer cell lines and identified that MET is coregulated with TGFBR2. This correlation was confirmed at the protein level in breast cancer cell lines and human tumor tissues. Flow cytometric analysis of luminal and basal‐like breast cancer cell lines and examination of 801 tumor specimens from a prospective cohort of breast cancer patients using reverse phase protein arrays revealed that expression of TGFBR2 and MET is increased in basal‐like breast cancer cell lines, as well as in triple‐negative breast cancer tumor tissues, compared to other subtypes. Using real‐time cell analysis technology, we demonstrated that TGFβ1 triggered hepatocyte growth factor (HGF)‐induced and MET‐dependent migration in vitro. Bioinformatic analysis predicted that TGFβ1 induces expression of C‐ets‐1 as a candidate transcription factor regulating MET expression. Indeed, TGFβ1‐induced expression of ETS1 and breast cancer cell migration was blocked by knockdown of ETS1. Further, we identified that MET is a direct target of miR‐128‐3p and that this miRNA is negatively regulated by TGFβ1. Overexpression of miR‐128‐3p reduced MET expression and abrogated HGF‐induced cell migration of invasive breast cancer cells. In conclusion, we have identified that TGFβ1 regulates HGF‐induced and MET‐mediated cell migration, through positive regulation of C‐ets‐1 and negative regulation of miR‐128‐3p expression in basal‐like breast cancer cell lines and in triple‐negative breast cancer tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.