Singlet fission can split a high energy singlet exciton and generate two lower energy triplet excito ns. This process has shown near 200 percent triplet exciton yield. Sensitizing solar cells with singlet fission material, it can potentially increase the power conversion efficiency limit from 29 percent to 35 percent. Singlet fission in the tetracene is known to be efficient, and the energy of the triplet excitons are energetically matched to the silicon bandgap. In this work, we designed an optical measurement with an external magnetic field to determine the efficiencies of triplet exciton transfer from tetracene to silicon. Using this method, we have found that a passivation layer of 8 angstroms of hafnium oxynitride on silicon allows efficient triplet exciton transfer around 133 percent.
Ketogenic diet (KD; high fat, low carb) is a standard treatment for obesity, neurological diseases (e.g., refractory epilepsy) and a promising method for athletes to improve their endurance performance. Therein, the level of ketosis must be regulated tightly to ensure an effective therapy. Here, we introduce a compact and inexpensive breath sensor to monitor ketosis online and non-invasively. The sensor consists of Si-doped WO3 nanoparticles that detect breath acetone selectively with non-linear response characteristics in the relevant range of 1 to 66 ppm, as identified by mass spectrometry. When tested on eleven subjects (five women and six men) undergoing a 36-h KD based on the Johns Hopkins protocol, this sensor clearly recognizes the onset and progression of ketosis. This is in good agreement to capillary blood β-hydroxybutyrate (BOHB) measurements. Despite similar dieting conditions, strong inter-subject differences in ketosis dynamics were observed and correctly identified by the sensor. These even included breath acetone patterns that could be linked to low tolerance to that diet. As a result, this portable breath sensor represents an easily applicable and reliable technology to monitor KD, possibly during medical treatment of epilepsy and weight loss.
Gas sensor arrays often lack discrimination power to different analytes and robustness to interferants, limiting their success outside of research laboratories. This is primarily due to the widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of orthogonality on array accuracy and precision by selective sensor design is investigated. Therefore, arrays of (2-5) selective and non-selective sensors are formed by systematically altering array size and composition. Their performance is evaluated with 60 random combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best analyte predictions with high coefficients of determination (R 2) of 0.96 for ammonia, 0.99 for acetone and 0.88 for ethanol are obtained with an array featuring high degree of orthogonality. This is achieved by using distinctly selective sensors (Si:MoO3 for ammonia and Si:WO3 for acetone together with Si:SnO2) that improve discrimination power and stability of the regression coefficients. On the other hand, arrays with collinear sensors (Pd:SnO2, Pt:SnO2 and Si:SnO2) hardly improve gas predictions having R 2 of 0.01, 0.86 and 0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower coefficient of determination than single sensors as a Si:MoO3 sensor alone predicts ammonia better with a R 2 of 0.68.
Gas sensor arrays often lack discrimination power to different analytes and robustness to interferants, limiting their success outside of research laboratories. This is primarily due to the widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of orthogonality on array accuracy and precision by selective sensor design is investigated.Therefore, arrays of (2 -5) selective and non-selective sensors are formed by systematically altering array size and composition. Their performance is evaluated with 60 random combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best analyte predictions with high coefficients of determination (R 2 ) of 0.96 for ammonia, 0.99 for acetone and 0.88 for ethanol are obtained with an array featuring high degree of orthogonality. This is achieved by using distinctly selective sensors (Si:MoO3 for ammonia and Si:WO3 for acetone together with Si:SnO2) that improve discrimination power and stability of the regression coefficients. On the other hand, arrays with collinear sensors (Pd:SnO2, Pt:SnO2 and Si:SnO2) hardly improve gas predictions having R 2 of 0.01, 0.86 and 0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower coefficient of determination than single sensors as a Si:MoO3 sensor alone predicts ammonia better with a R 2 of 0.68.
Singlet fission can split a high energy singlet exciton and generate two lower energy triplet excito ns. This process has shown near 200 percent triplet exciton yield. Sensitizing solar cells with singlet fission material, it can potentially increase the power conversion efficiency limit from 29 percent to 35 percent. Singlet fission in the tetracene is known to be efficient, and the energy of the triplet excitons are energetically matched to the silicon bandgap. In this work, we designed an optical measurement with an external magnetic field to determine the efficiencies of triplet exciton transfer from tetracene to silicon. Using this method, we have found that a passivation layer of 8 angstroms of hafnium oxynitride on silicon allows efficient triplet exciton transfer around 133 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.