The technology of hairpin welding, which is frequently used in the automotive industry, entails high-quality requirements in the welding process. It can be difficult to trace the defect back to the affected weld if a non-functioning stator is detected during the final inspection. Often, a visual assessment of a cooled weld seam does not provide any information about its strength. However, based on the behavior during welding, especially about spattering, conclusions can be made about the quality of the weld. In addition, spatter on the component can have serious consequences. In this paper, we present in-process monitoring of laser-based hairpin welding. Using an in-process image analyzed by a neural network, we present a spatter detection method that allows conclusions to be drawn about the quality of the weld. In this way, faults caused by spattering can be detected at an early stage and the affected components sorted out. The implementation is based on a small data set and under consideration of a fast process time on hardware with limited computing power. With a network architecture that uses dilated convolutions, we obtain a large receptive field and can therefore consider feature interrelation in the image. As a result, we obtain a pixel-wise classifier, which allows us to infer the spatter areas directly on the production lines.
Machine learning (ML) is a key technology in smart manufacturing as it provides insights into complex processes without requiring deep domain expertise. This work deals with deep learning algorithms to determine a 3D reconstruction from a single 2D grayscale image. The potential of 3D reconstruction can be used for quality control because the height values contain relevant information that is not visible in 2D data. Instead of 3D scans, estimated depth maps based on a 2D input image can be used with the advantage of a simple setup and a short recording time. Determining a 3D reconstruction from a single input image is a difficult task for which many algorithms and methods have been proposed in the past decades. In this work, three deep learning methods, namely stacked autoencoder (SAE), generative adversarial networks (GANs) and U-Nets are investigated, evaluated and compared for 3D reconstruction from a 2D grayscale image of laser-welded components. In this work, different variants of GANs are tested, with the conclusion that Wasserstein GANs (WGANs) are the most robust approach among them. To the best of our knowledge, the present paper considers for the first time the U-Net, which achieves outstanding results in semantic segmentation, in the context of 3D reconstruction tasks. Unlike the U-Net, which uses standard convolutions, the stacked dilated U-Net (SDU-Net) applies stacked dilated convolutions. Of all the 3D reconstruction approaches considered in this work, the SDU-Net shows the best performance, not only in terms of evaluation metrics but also in terms of computation time. Due to the comparably small number of trainable parameters and the suitability of the architecture for strong data augmentation, a robust model can be generated with only a few training data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.