Machine learning (ML) is a key technology in smart manufacturing as it provides insights into complex processes without requiring deep domain expertise. This work deals with deep learning algorithms to determine a 3D reconstruction from a single 2D grayscale image. The potential of 3D reconstruction can be used for quality control because the height values contain relevant information that is not visible in 2D data. Instead of 3D scans, estimated depth maps based on a 2D input image can be used with the advantage of a simple setup and a short recording time. Determining a 3D reconstruction from a single input image is a difficult task for which many algorithms and methods have been proposed in the past decades. In this work, three deep learning methods, namely stacked autoencoder (SAE), generative adversarial networks (GANs) and U-Nets are investigated, evaluated and compared for 3D reconstruction from a 2D grayscale image of laser-welded components. In this work, different variants of GANs are tested, with the conclusion that Wasserstein GANs (WGANs) are the most robust approach among them. To the best of our knowledge, the present paper considers for the first time the U-Net, which achieves outstanding results in semantic segmentation, in the context of 3D reconstruction tasks. Unlike the U-Net, which uses standard convolutions, the stacked dilated U-Net (SDU-Net) applies stacked dilated convolutions. Of all the 3D reconstruction approaches considered in this work, the SDU-Net shows the best performance, not only in terms of evaluation metrics but also in terms of computation time. Due to the comparably small number of trainable parameters and the suitability of the architecture for strong data augmentation, a robust model can be generated with only a few training data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.