Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing, translation, mRNA transport and DNA damage response. In this study, we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end, we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation, mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large, densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover, even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary, we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage, which in turn might be directly linked to neurodegeneration.
Mutations in genes coding for proteins involved in DNA damage response (DDR) and repair, such as C9orf72 and FUS (Fused in Sarcoma), are associated with neurodegenerative diseases and lead to amyotrophic lateral sclerosis (ALS). Heterozygous loss-of-function mutations in NEK1 (NIMA-related kinase 1) have also been recently found to cause ALS. NEK1 codes for a multifunctional protein, crucially involved in mitotic checkpoint control and DDR. To resolve pathological alterations associated with NEK1 mutation, we compared hiPSC-derived motoneurons carrying a NEK1 mutation with mutant C9orf72 and wild type neurons at basal level and after DNA damage induction. Motoneurons carrying a C9orf72 mutation exhibited cell specific signs of increased DNA damage. This phenotype was even more severe in NEK1 neurons that showed significantly increased DNA damage at basal level and impaired DDR after induction of DNA damage in an maturation-dependent manner. Our results provide first mechanistic insight in pathophysiological alterations induced by NEK1 mutations and point to a converging pathomechanism of different gene mutations causative for ALS. Therefore, our study contributes to the development of novel therapeutic strategies to reduce DNA damage accumulation in neurodegenerative diseases and ALS.
Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(−/−) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(−/−) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(−/−) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.
Mutations in the TBK1 (TANK binding kinase 1) gene are causally linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TBK1 phosphorylates the cargo receptors OPTN and SQSTM1 regulating a critical step in macroautophagy/autophagy. Disruption of the autophagic flux leads to accumulation of cytosolic protein aggregates, which are a hallmark of ALS. hiPSC-derived TBK1-mutant motoneurons (MNs) showed reduced TBK1 levels and accumulation of cytosolic SQSTM1-positive aggresomes. By screening a library of nuclear-receptor-agonists for modifiers of the SQSTM1 aggregates, we identified 4-hydroxy-(phenyl)retinamide (4HPR) as a potent modifier exerting detrimental effects on mutant-TBK1 motoneurons fitness exacerbating the autophagy overload. We have shown by TEM that TBK1-mutant motoneurons accumulate immature phagophores due a failure in the elongation phase, and 4HPR further worsens the burden of dysfunctional phagophores. 4HPR-increased toxicity was associated with the upregulation of SQSTM1 in a context of strongly reduced ATG10, while rescue of ATG10 levels abolished 4HPR toxicity. Finally, we showed that 4HPR leads to a downregulation of ATG10 and to an accumulation of SQSTM1 + aggresomes also in hiPSC-derived C9orf72-mutant motoneurons. Our data show that cultured human motoneurons harboring mutations in TBK1 gene display typical ALS features, like decreased viability and accumulation of cytosolic SQSTM1-positive aggresomes. The retinoid 4HPR appears a strong negative modifier of the fitness of TBK1 and C9orf72-mutant MNs, through a pathway converging on the mismatch of initiated autophagy and ATG10 levels. Thus, autophagy induction appears not to be a therapeutic strategy for ALS unless the specific underlying pathway alterations are properly addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.