The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) system represents a powerful gene-editing tool and could enable treatment of blinding diseases of the retina. As a peptide of bacterial origin, we investigated the immunogenic potential of Cas9 in models of retinal immunocompetent cells: human microglia (IMhu) and ARPE-19 cells. Transfection with Streptococcus pyogenes-Cas9 expression plasmids (SpCas9 plasmid) induced Cas9 protein expression in both cell lines. However, only ARPE-19 cells, not IMhu cells, responded with pro-inflammatory immune responses as evidenced by the upregulation of IL-8, IL-6, and the cellular activation markers HLA-ABC and CD54 (ICAM). These pro-inflammatory responses were also induced through transfection with equally sized non-coding control plasmids. Moreover, viability rates of ARPE-19 cells were reduced after transfection with both the SpCas9 plasmids and the control plasmids. Although these results demonstrate cell type-specific responses to the DNA plasmid vector, they show no evidence of an immunogenic effect due to the presence of Cas9 in models of human retinal pigment epithelial and microglia cells. These findings add another layer of confidence in the immunological safety of potential future Cas9-mediated retinal gene therapies.
Retinal gene therapy has recently been at the cutting edge of clinical development in the diverse field of genetic therapies. The retina is an attractive target for genetic therapies such as gene editing due to the distinctive anatomical and immunological features of the eye, known as immune privilege, so that inherited retinal diseases (IRDs) have been studied in several clinical studies. Thus, rapid strides are being made toward developing targeted treatments for IRDs. Gene editing in the retina faces a group of heterogenous challenges, including editing efficiencies, off-target effects, the anatomy of the target organ, immune responses, inactivation, and identifying optimal application methods. As clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) based technologies are at the forefront of current gene editing advances, their specific editing efficiency challenges and potential off-target effects were assessed. The immune privilege of the eye reduces the likelihood of systemic immune responses following retinal gene therapy, but possible immune responses must not be discounted. Immune responses to gene editing in the retina may be humoral or cell mediated, with immunologically active cells, including microglia, implicated in facilitating possible immune responses to gene editing. Immunogenicity of gene therapeutics may also lead to the inactivation of edited cells, reducing potential therapeutic benefits. This review outlines the broad spectrum of potential challenges currently facing retinal gene editing, with the goal of facilitating further advances in the safety and efficacy of gene editing therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.